Properties

Label 2-23562-1.1-c1-0-22
Degree $2$
Conductor $23562$
Sign $-1$
Analytic cond. $188.143$
Root an. cond. $13.7165$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s + 7-s + 8-s − 4·10-s + 11-s + 14-s + 16-s + 17-s + 4·19-s − 4·20-s + 22-s − 6·23-s + 11·25-s + 28-s − 6·29-s − 8·31-s + 32-s + 34-s − 4·35-s + 6·37-s + 4·38-s − 4·40-s + 2·41-s + 8·43-s + 44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.78·5-s + 0.377·7-s + 0.353·8-s − 1.26·10-s + 0.301·11-s + 0.267·14-s + 1/4·16-s + 0.242·17-s + 0.917·19-s − 0.894·20-s + 0.213·22-s − 1.25·23-s + 11/5·25-s + 0.188·28-s − 1.11·29-s − 1.43·31-s + 0.176·32-s + 0.171·34-s − 0.676·35-s + 0.986·37-s + 0.648·38-s − 0.632·40-s + 0.312·41-s + 1.21·43-s + 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23562 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23562 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23562\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(188.143\)
Root analytic conductor: \(13.7165\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23562,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.70765251537015, −15.05237654867416, −14.71572102754651, −14.25397107427856, −13.61058067112331, −12.88840840431328, −12.37535163573695, −11.91493008771049, −11.54432518251694, −10.95296607529278, −10.62406703246985, −9.557658461934510, −9.116391486734127, −8.232425686449160, −7.707347074424565, −7.482496628328613, −6.826038091371814, −5.892249391492713, −5.450132033844502, −4.535241389698002, −4.141149916303307, −3.598664965737025, −3.013568085690076, −2.019835805138384, −1.052409644678561, 0, 1.052409644678561, 2.019835805138384, 3.013568085690076, 3.598664965737025, 4.141149916303307, 4.535241389698002, 5.450132033844502, 5.892249391492713, 6.826038091371814, 7.482496628328613, 7.707347074424565, 8.232425686449160, 9.116391486734127, 9.557658461934510, 10.62406703246985, 10.95296607529278, 11.54432518251694, 11.91493008771049, 12.37535163573695, 12.88840840431328, 13.61058067112331, 14.25397107427856, 14.71572102754651, 15.05237654867416, 15.70765251537015

Graph of the $Z$-function along the critical line