| L(s)  = 1 | − 3-s   − 2·4-s   + 5-s     − 2·7-s     + 9-s     − 5·11-s   + 2·12-s   + 5·13-s     − 15-s   + 4·16-s   + 5·17-s       − 2·20-s   + 2·21-s     − 9·23-s     + 25-s     − 27-s   + 4·28-s   − 8·29-s     + 5·31-s     + 5·33-s     − 2·35-s   − 2·36-s   − 8·37-s     − 5·39-s     + 7·41-s     − 43-s   + 10·44-s  + ⋯ | 
| L(s)  = 1 | − 0.577·3-s   − 4-s   + 0.447·5-s     − 0.755·7-s     + 1/3·9-s     − 1.50·11-s   + 0.577·12-s   + 1.38·13-s     − 0.258·15-s   + 16-s   + 1.21·17-s       − 0.447·20-s   + 0.436·21-s     − 1.87·23-s     + 1/5·25-s     − 0.192·27-s   + 0.755·28-s   − 1.48·29-s     + 0.898·31-s     + 0.870·33-s     − 0.338·35-s   − 1/3·36-s   − 1.31·37-s     − 0.800·39-s     + 1.09·41-s     − 0.152·43-s   + 1.50·44-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 232845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 232845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 | \( 1 + T \) |  | 
|  | 5 | \( 1 - T \) |  | 
|  | 19 | \( 1 \) |  | 
|  | 43 | \( 1 + T \) |  | 
| good | 2 | \( 1 + p T^{2} \) | 1.2.a | 
|  | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c | 
|  | 11 | \( 1 + 5 T + p T^{2} \) | 1.11.f | 
|  | 13 | \( 1 - 5 T + p T^{2} \) | 1.13.af | 
|  | 17 | \( 1 - 5 T + p T^{2} \) | 1.17.af | 
|  | 23 | \( 1 + 9 T + p T^{2} \) | 1.23.j | 
|  | 29 | \( 1 + 8 T + p T^{2} \) | 1.29.i | 
|  | 31 | \( 1 - 5 T + p T^{2} \) | 1.31.af | 
|  | 37 | \( 1 + 8 T + p T^{2} \) | 1.37.i | 
|  | 41 | \( 1 - 7 T + p T^{2} \) | 1.41.ah | 
|  | 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i | 
|  | 53 | \( 1 - 5 T + p T^{2} \) | 1.53.af | 
|  | 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae | 
|  | 61 | \( 1 + p T^{2} \) | 1.61.a | 
|  | 67 | \( 1 + 9 T + p T^{2} \) | 1.67.j | 
|  | 71 | \( 1 + 10 T + p T^{2} \) | 1.71.k | 
|  | 73 | \( 1 - 4 T + p T^{2} \) | 1.73.ae | 
|  | 79 | \( 1 + 16 T + p T^{2} \) | 1.79.q | 
|  | 83 | \( 1 + 9 T + p T^{2} \) | 1.83.j | 
|  | 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag | 
|  | 97 | \( 1 + 3 T + p T^{2} \) | 1.97.d | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.15473161068632, −12.71025037728159, −12.46614369024373, −11.75564044390747, −11.33838262537567, −10.62955058505075, −10.18001940514679, −10.05576223299790, −9.594150449652743, −8.938667141276163, −8.437581693009679, −8.031022358549612, −7.562194694077543, −6.993419594998378, −6.145611660267139, −5.768902809239716, −5.722608361622738, −5.025769143501344, −4.423707445346129, −3.854021393101853, −3.353294216662817, −2.914357046349138, −1.947553081201195, −1.420529377544086, −0.5740596958117184, 0, 
0.5740596958117184, 1.420529377544086, 1.947553081201195, 2.914357046349138, 3.353294216662817, 3.854021393101853, 4.423707445346129, 5.025769143501344, 5.722608361622738, 5.768902809239716, 6.145611660267139, 6.993419594998378, 7.562194694077543, 8.031022358549612, 8.437581693009679, 8.938667141276163, 9.594150449652743, 10.05576223299790, 10.18001940514679, 10.62955058505075, 11.33838262537567, 11.75564044390747, 12.46614369024373, 12.71025037728159, 13.15473161068632
