Properties

Label 2-232845-1.1-c1-0-4
Degree $2$
Conductor $232845$
Sign $-1$
Analytic cond. $1859.27$
Root an. cond. $43.1193$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 5-s − 2·7-s + 9-s − 5·11-s + 2·12-s + 5·13-s − 15-s + 4·16-s + 5·17-s − 2·20-s + 2·21-s − 9·23-s + 25-s − 27-s + 4·28-s − 8·29-s + 5·31-s + 5·33-s − 2·35-s − 2·36-s − 8·37-s − 5·39-s + 7·41-s − 43-s + 10·44-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 0.447·5-s − 0.755·7-s + 1/3·9-s − 1.50·11-s + 0.577·12-s + 1.38·13-s − 0.258·15-s + 16-s + 1.21·17-s − 0.447·20-s + 0.436·21-s − 1.87·23-s + 1/5·25-s − 0.192·27-s + 0.755·28-s − 1.48·29-s + 0.898·31-s + 0.870·33-s − 0.338·35-s − 1/3·36-s − 1.31·37-s − 0.800·39-s + 1.09·41-s − 0.152·43-s + 1.50·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 232845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 232845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(232845\)    =    \(3 \cdot 5 \cdot 19^{2} \cdot 43\)
Sign: $-1$
Analytic conductor: \(1859.27\)
Root analytic conductor: \(43.1193\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 232845,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 - T \)
19 \( 1 \)
43 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 5 T + p T^{2} \) 1.17.af
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15473161068632, −12.71025037728159, −12.46614369024373, −11.75564044390747, −11.33838262537567, −10.62955058505075, −10.18001940514679, −10.05576223299790, −9.594150449652743, −8.938667141276163, −8.437581693009679, −8.031022358549612, −7.562194694077543, −6.993419594998378, −6.145611660267139, −5.768902809239716, −5.722608361622738, −5.025769143501344, −4.423707445346129, −3.854021393101853, −3.353294216662817, −2.914357046349138, −1.947553081201195, −1.420529377544086, −0.5740596958117184, 0, 0.5740596958117184, 1.420529377544086, 1.947553081201195, 2.914357046349138, 3.353294216662817, 3.854021393101853, 4.423707445346129, 5.025769143501344, 5.722608361622738, 5.768902809239716, 6.145611660267139, 6.993419594998378, 7.562194694077543, 8.031022358549612, 8.437581693009679, 8.938667141276163, 9.594150449652743, 10.05576223299790, 10.18001940514679, 10.62955058505075, 11.33838262537567, 11.75564044390747, 12.46614369024373, 12.71025037728159, 13.15473161068632

Graph of the $Z$-function along the critical line