Properties

Label 2-232730-1.1-c1-0-22
Degree $2$
Conductor $232730$
Sign $-1$
Analytic cond. $1858.35$
Root an. cond. $43.1086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s + 5-s − 2·6-s + 2·7-s + 8-s + 9-s + 10-s + 6·11-s − 2·12-s − 2·13-s + 2·14-s − 2·15-s + 16-s − 17-s + 18-s − 8·19-s + 20-s − 4·21-s + 6·22-s + 6·23-s − 2·24-s + 25-s − 2·26-s + 4·27-s + 2·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.80·11-s − 0.577·12-s − 0.554·13-s + 0.534·14-s − 0.516·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 1.83·19-s + 0.223·20-s − 0.872·21-s + 1.27·22-s + 1.25·23-s − 0.408·24-s + 1/5·25-s − 0.392·26-s + 0.769·27-s + 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 232730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 232730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(232730\)    =    \(2 \cdot 5 \cdot 17 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(1858.35\)
Root analytic conductor: \(43.1086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 232730,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 - T \)
17 \( 1 + T \)
37 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01888559488164, −12.50996269492785, −12.25462088727238, −11.75453661457328, −11.42756962403170, −10.86585400757732, −10.63792993847938, −10.15412063345440, −9.379032976681532, −8.892422763782045, −8.607897832720854, −7.892009829266442, −7.138054677790729, −6.692993189801859, −6.465613397404409, −6.019494233658434, −5.338672402458562, −4.999532826058714, −4.485192631620324, −4.087484854400733, −3.493962742595839, −2.524479282791378, −2.237046851035676, −1.300608426496155, −1.041115418886348, 0, 1.041115418886348, 1.300608426496155, 2.237046851035676, 2.524479282791378, 3.493962742595839, 4.087484854400733, 4.485192631620324, 4.999532826058714, 5.338672402458562, 6.019494233658434, 6.465613397404409, 6.692993189801859, 7.138054677790729, 7.892009829266442, 8.607897832720854, 8.892422763782045, 9.379032976681532, 10.15412063345440, 10.63792993847938, 10.86585400757732, 11.42756962403170, 11.75453661457328, 12.25462088727238, 12.50996269492785, 13.01888559488164

Graph of the $Z$-function along the critical line