Properties

Label 2-225318-1.1-c1-0-19
Degree $2$
Conductor $225318$
Sign $-1$
Analytic cond. $1799.17$
Root an. cond. $42.4166$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 3·5-s − 6-s − 4·7-s − 8-s + 9-s − 3·10-s + 3·11-s + 12-s − 13-s + 4·14-s + 3·15-s + 16-s − 17-s − 18-s − 4·19-s + 3·20-s − 4·21-s − 3·22-s − 3·23-s − 24-s + 4·25-s + 26-s + 27-s − 4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s + 0.904·11-s + 0.288·12-s − 0.277·13-s + 1.06·14-s + 0.774·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.917·19-s + 0.670·20-s − 0.872·21-s − 0.639·22-s − 0.625·23-s − 0.204·24-s + 4/5·25-s + 0.196·26-s + 0.192·27-s − 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225318 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225318 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225318\)    =    \(2 \cdot 3 \cdot 17 \cdot 47^{2}\)
Sign: $-1$
Analytic conductor: \(1799.17\)
Root analytic conductor: \(42.4166\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 225318,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
17 \( 1 + T \)
47 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08243195888286, −12.86565950768374, −12.38116779691322, −11.80444823448091, −11.19220133383787, −10.65187940074711, −10.11621242265518, −9.775192606322898, −9.531267613285919, −9.087547338502619, −8.610755731138530, −8.254969256746233, −7.281649926689709, −7.041670894790376, −6.483332371926145, −6.243850468152069, −5.569366003763270, −5.212520497153088, −4.084831034422603, −3.806429058647795, −3.223012657511990, −2.491693723465332, −2.066415707634348, −1.699959026551390, −0.7710558057863530, 0, 0.7710558057863530, 1.699959026551390, 2.066415707634348, 2.491693723465332, 3.223012657511990, 3.806429058647795, 4.084831034422603, 5.212520497153088, 5.569366003763270, 6.243850468152069, 6.483332371926145, 7.041670894790376, 7.281649926689709, 8.254969256746233, 8.610755731138530, 9.087547338502619, 9.531267613285919, 9.775192606322898, 10.11621242265518, 10.65187940074711, 11.19220133383787, 11.80444823448091, 12.38116779691322, 12.86565950768374, 13.08243195888286

Graph of the $Z$-function along the critical line