| L(s)  = 1  |   − 2-s   + 3-s   + 4-s   + 3·5-s   − 6-s   − 4·7-s   − 8-s   + 9-s   − 3·10-s   + 3·11-s   + 12-s   − 13-s   + 4·14-s   + 3·15-s   + 16-s   − 17-s   − 18-s   − 4·19-s   + 3·20-s   − 4·21-s   − 3·22-s   − 3·23-s   − 24-s   + 4·25-s   + 26-s   + 27-s   − 4·28-s  + ⋯ | 
 
| L(s)  = 1  |   − 0.707·2-s   + 0.577·3-s   + 1/2·4-s   + 1.34·5-s   − 0.408·6-s   − 1.51·7-s   − 0.353·8-s   + 1/3·9-s   − 0.948·10-s   + 0.904·11-s   + 0.288·12-s   − 0.277·13-s   + 1.06·14-s   + 0.774·15-s   + 1/4·16-s   − 0.242·17-s   − 0.235·18-s   − 0.917·19-s   + 0.670·20-s   − 0.872·21-s   − 0.639·22-s   − 0.625·23-s   − 0.204·24-s   + 4/5·25-s   + 0.196·26-s   + 0.192·27-s   − 0.755·28-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 225318 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225318 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 + T \)  |    | 
 | 3 |  \( 1 - T \)  |    | 
 | 17 |  \( 1 + T \)  |    | 
 | 47 |  \( 1 \)  |    | 
| good | 5 |  \( 1 - 3 T + p T^{2} \)  |  1.5.ad  | 
 | 7 |  \( 1 + 4 T + p T^{2} \)  |  1.7.e  | 
 | 11 |  \( 1 - 3 T + p T^{2} \)  |  1.11.ad  | 
 | 13 |  \( 1 + T + p T^{2} \)  |  1.13.b  | 
 | 19 |  \( 1 + 4 T + p T^{2} \)  |  1.19.e  | 
 | 23 |  \( 1 + 3 T + p T^{2} \)  |  1.23.d  | 
 | 29 |  \( 1 + 3 T + p T^{2} \)  |  1.29.d  | 
 | 31 |  \( 1 + 10 T + p T^{2} \)  |  1.31.k  | 
 | 37 |  \( 1 - 2 T + p T^{2} \)  |  1.37.ac  | 
 | 41 |  \( 1 + 6 T + p T^{2} \)  |  1.41.g  | 
 | 43 |  \( 1 + 4 T + p T^{2} \)  |  1.43.e  | 
 | 53 |  \( 1 - 12 T + p T^{2} \)  |  1.53.am  | 
 | 59 |  \( 1 - 6 T + p T^{2} \)  |  1.59.ag  | 
 | 61 |  \( 1 - 8 T + p T^{2} \)  |  1.61.ai  | 
 | 67 |  \( 1 - 11 T + p T^{2} \)  |  1.67.al  | 
 | 71 |  \( 1 - 3 T + p T^{2} \)  |  1.71.ad  | 
 | 73 |  \( 1 + 4 T + p T^{2} \)  |  1.73.e  | 
 | 79 |  \( 1 - 14 T + p T^{2} \)  |  1.79.ao  | 
 | 83 |  \( 1 + p T^{2} \)  |  1.83.a  | 
 | 89 |  \( 1 + 12 T + p T^{2} \)  |  1.89.m  | 
 | 97 |  \( 1 + 16 T + p T^{2} \)  |  1.97.q  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.08243195888286, −12.86565950768374, −12.38116779691322, −11.80444823448091, −11.19220133383787, −10.65187940074711, −10.11621242265518, −9.775192606322898, −9.531267613285919, −9.087547338502619, −8.610755731138530, −8.254969256746233, −7.281649926689709, −7.041670894790376, −6.483332371926145, −6.243850468152069, −5.569366003763270, −5.212520497153088, −4.084831034422603, −3.806429058647795, −3.223012657511990, −2.491693723465332, −2.066415707634348, −1.699959026551390, −0.7710558057863530, 0, 
0.7710558057863530, 1.699959026551390, 2.066415707634348, 2.491693723465332, 3.223012657511990, 3.806429058647795, 4.084831034422603, 5.212520497153088, 5.569366003763270, 6.243850468152069, 6.483332371926145, 7.041670894790376, 7.281649926689709, 8.254969256746233, 8.610755731138530, 9.087547338502619, 9.531267613285919, 9.775192606322898, 10.11621242265518, 10.65187940074711, 11.19220133383787, 11.80444823448091, 12.38116779691322, 12.86565950768374, 13.08243195888286