Properties

Label 2-221760-1.1-c1-0-241
Degree $2$
Conductor $221760$
Sign $-1$
Analytic cond. $1770.76$
Root an. cond. $42.0804$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s − 11-s − 2·13-s − 6·17-s + 4·19-s + 25-s + 6·29-s + 8·31-s − 35-s + 10·37-s + 6·41-s − 8·43-s + 49-s + 6·53-s + 55-s + 12·59-s − 2·61-s + 2·65-s + 4·67-s − 12·71-s − 10·73-s − 77-s − 4·79-s − 12·83-s + 6·85-s − 6·89-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s − 0.301·11-s − 0.554·13-s − 1.45·17-s + 0.917·19-s + 1/5·25-s + 1.11·29-s + 1.43·31-s − 0.169·35-s + 1.64·37-s + 0.937·41-s − 1.21·43-s + 1/7·49-s + 0.824·53-s + 0.134·55-s + 1.56·59-s − 0.256·61-s + 0.248·65-s + 0.488·67-s − 1.42·71-s − 1.17·73-s − 0.113·77-s − 0.450·79-s − 1.31·83-s + 0.650·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(221760\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(1770.76\)
Root analytic conductor: \(42.0804\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 221760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19732370241921, −12.80055680020878, −12.14877497378834, −11.71407667872878, −11.44380214371501, −10.99490693381445, −10.33595508430700, −9.942863569490811, −9.573752978133845, −8.747165307251894, −8.573939653963473, −7.993272792265067, −7.544974709610078, −6.989728683427247, −6.632968648292839, −5.980921135174466, −5.436389616893724, −4.843244947124691, −4.319356135755251, −4.181793886873522, −3.142520705084073, −2.694080657725240, −2.317656648656603, −1.371011942834884, −0.8033516317495055, 0, 0.8033516317495055, 1.371011942834884, 2.317656648656603, 2.694080657725240, 3.142520705084073, 4.181793886873522, 4.319356135755251, 4.843244947124691, 5.436389616893724, 5.980921135174466, 6.632968648292839, 6.989728683427247, 7.544974709610078, 7.993272792265067, 8.573939653963473, 8.747165307251894, 9.573752978133845, 9.942863569490811, 10.33595508430700, 10.99490693381445, 11.44380214371501, 11.71407667872878, 12.14877497378834, 12.80055680020878, 13.19732370241921

Graph of the $Z$-function along the critical line