Properties

Label 2-148e2-1.1-c1-0-9
Degree $2$
Conductor $21904$
Sign $1$
Analytic cond. $174.904$
Root an. cond. $13.2251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·5-s + 4·7-s + 9-s + 6·11-s + 2·13-s + 6·15-s + 3·17-s − 2·19-s + 8·21-s − 6·23-s + 4·25-s − 4·27-s + 3·29-s − 2·31-s + 12·33-s + 12·35-s + 4·39-s + 3·41-s + 4·43-s + 3·45-s + 6·47-s + 9·49-s + 6·51-s − 6·53-s + 18·55-s − 4·57-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.34·5-s + 1.51·7-s + 1/3·9-s + 1.80·11-s + 0.554·13-s + 1.54·15-s + 0.727·17-s − 0.458·19-s + 1.74·21-s − 1.25·23-s + 4/5·25-s − 0.769·27-s + 0.557·29-s − 0.359·31-s + 2.08·33-s + 2.02·35-s + 0.640·39-s + 0.468·41-s + 0.609·43-s + 0.447·45-s + 0.875·47-s + 9/7·49-s + 0.840·51-s − 0.824·53-s + 2.42·55-s − 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21904\)    =    \(2^{4} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(174.904\)
Root analytic conductor: \(13.2251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21904,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.190179459\)
\(L(\frac12)\) \(\approx\) \(7.190179459\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
37 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.31157663346198, −14.63890651824463, −14.27226098084260, −14.15841362642864, −13.73821500314859, −12.99967223477918, −12.26417846899733, −11.72243635755504, −11.16914769229914, −10.51615262701303, −9.813131214945725, −9.382588737163377, −8.791768719125714, −8.450275098634812, −7.823859273076310, −7.188954637901711, −6.253874165364370, −5.932076259301143, −5.225674938068710, −4.229416320415736, −3.955535368666894, −2.976157486553858, −2.161402156529859, −1.658858866713202, −1.168859188211210, 1.168859188211210, 1.658858866713202, 2.161402156529859, 2.976157486553858, 3.955535368666894, 4.229416320415736, 5.225674938068710, 5.932076259301143, 6.253874165364370, 7.188954637901711, 7.823859273076310, 8.450275098634812, 8.791768719125714, 9.382588737163377, 9.813131214945725, 10.51615262701303, 11.16914769229914, 11.72243635755504, 12.26417846899733, 12.99967223477918, 13.73821500314859, 14.15841362642864, 14.27226098084260, 14.63890651824463, 15.31157663346198

Graph of the $Z$-function along the critical line