Properties

Label 2-218400-1.1-c1-0-108
Degree $2$
Conductor $218400$
Sign $-1$
Analytic cond. $1743.93$
Root an. cond. $41.7604$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 2·11-s + 13-s − 2·17-s + 4·19-s − 21-s + 6·23-s + 27-s + 6·29-s − 4·31-s − 2·33-s − 10·37-s + 39-s + 2·41-s − 10·43-s − 6·47-s + 49-s − 2·51-s + 12·53-s + 4·57-s − 4·61-s − 63-s + 6·69-s − 4·71-s − 4·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.603·11-s + 0.277·13-s − 0.485·17-s + 0.917·19-s − 0.218·21-s + 1.25·23-s + 0.192·27-s + 1.11·29-s − 0.718·31-s − 0.348·33-s − 1.64·37-s + 0.160·39-s + 0.312·41-s − 1.52·43-s − 0.875·47-s + 1/7·49-s − 0.280·51-s + 1.64·53-s + 0.529·57-s − 0.512·61-s − 0.125·63-s + 0.722·69-s − 0.474·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 218400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 218400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(218400\)    =    \(2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1743.93\)
Root analytic conductor: \(41.7604\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 218400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25645106343165, −12.95772693666040, −12.27435248366627, −11.86047989318697, −11.39073548509605, −10.78478452277452, −10.28285384777516, −10.07965892100053, −9.362544646952596, −8.866926089182834, −8.675215993042355, −8.027094310032287, −7.503722774988037, −7.008418888637605, −6.679994955806786, −6.044211595209849, −5.318674654424896, −5.020193512045006, −4.466272777046997, −3.647063622870384, −3.301598498435585, −2.839813290835643, −2.185339140180300, −1.534147104204752, −0.8507508079699349, 0, 0.8507508079699349, 1.534147104204752, 2.185339140180300, 2.839813290835643, 3.301598498435585, 3.647063622870384, 4.466272777046997, 5.020193512045006, 5.318674654424896, 6.044211595209849, 6.679994955806786, 7.008418888637605, 7.503722774988037, 8.027094310032287, 8.675215993042355, 8.866926089182834, 9.362544646952596, 10.07965892100053, 10.28285384777516, 10.78478452277452, 11.39073548509605, 11.86047989318697, 12.27435248366627, 12.95772693666040, 13.25645106343165

Graph of the $Z$-function along the critical line