Properties

Label 2-21840-1.1-c1-0-32
Degree $2$
Conductor $21840$
Sign $-1$
Analytic cond. $174.393$
Root an. cond. $13.2058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 13-s + 15-s − 6·17-s + 4·19-s + 21-s + 25-s − 27-s + 6·29-s − 8·31-s + 35-s + 2·37-s − 39-s + 6·41-s − 8·43-s − 45-s − 12·47-s + 49-s + 6·51-s − 6·53-s − 4·57-s + 12·59-s + 14·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 0.277·13-s + 0.258·15-s − 1.45·17-s + 0.917·19-s + 0.218·21-s + 1/5·25-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.169·35-s + 0.328·37-s − 0.160·39-s + 0.937·41-s − 1.21·43-s − 0.149·45-s − 1.75·47-s + 1/7·49-s + 0.840·51-s − 0.824·53-s − 0.529·57-s + 1.56·59-s + 1.79·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21840\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(174.393\)
Root analytic conductor: \(13.2058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 21840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94426671223946, −15.51317399471442, −14.64946930441484, −14.35843069573847, −13.44864389066042, −13.02275010048079, −12.69898212634351, −11.72129228159837, −11.59469589684158, −10.94487590389582, −10.44892019917694, −9.640972233340439, −9.331378536149141, −8.440849669563933, −8.075254558672935, −7.169047144372385, −6.725958870970600, −6.286187588739806, −5.348698796367694, −4.970578496805958, −4.118375262993654, −3.602286432379060, −2.766403760211819, −1.903258212697719, −0.9023217311184532, 0, 0.9023217311184532, 1.903258212697719, 2.766403760211819, 3.602286432379060, 4.118375262993654, 4.970578496805958, 5.348698796367694, 6.286187588739806, 6.725958870970600, 7.169047144372385, 8.075254558672935, 8.440849669563933, 9.331378536149141, 9.640972233340439, 10.44892019917694, 10.94487590389582, 11.59469589684158, 11.72129228159837, 12.69898212634351, 13.02275010048079, 13.44864389066042, 14.35843069573847, 14.64946930441484, 15.51317399471442, 15.94426671223946

Graph of the $Z$-function along the critical line