| L(s)  = 1 | − 2-s     − 4-s       + 4·7-s   + 3·8-s       − 4·11-s     + 2·13-s   − 4·14-s     − 16-s   + 6·17-s     − 4·19-s       + 4·22-s         − 2·26-s     − 4·28-s   − 6·29-s       − 5·32-s     − 6·34-s       + 10·37-s   + 4·38-s       + 6·41-s     − 12·43-s   + 4·44-s           + 9·49-s       − 2·52-s   + 2·53-s       + 12·56-s     + 6·58-s   + 8·59-s  + ⋯ | 
| L(s)  = 1 | − 0.707·2-s     − 1/2·4-s       + 1.51·7-s   + 1.06·8-s       − 1.20·11-s     + 0.554·13-s   − 1.06·14-s     − 1/4·16-s   + 1.45·17-s     − 0.917·19-s       + 0.852·22-s         − 0.392·26-s     − 0.755·28-s   − 1.11·29-s       − 0.883·32-s     − 1.02·34-s       + 1.64·37-s   + 0.648·38-s       + 0.937·41-s     − 1.82·43-s   + 0.603·44-s           + 9/7·49-s       − 0.277·52-s   + 0.274·53-s       + 1.60·56-s     + 0.787·58-s   + 1.04·59-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 216225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 31 | \( 1 \) |  | 
| good | 2 | \( 1 + T + p T^{2} \) | 1.2.b | 
|  | 7 | \( 1 - 4 T + p T^{2} \) | 1.7.ae | 
|  | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e | 
|  | 13 | \( 1 - 2 T + p T^{2} \) | 1.13.ac | 
|  | 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag | 
|  | 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e | 
|  | 23 | \( 1 + p T^{2} \) | 1.23.a | 
|  | 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g | 
|  | 37 | \( 1 - 10 T + p T^{2} \) | 1.37.ak | 
|  | 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag | 
|  | 43 | \( 1 + 12 T + p T^{2} \) | 1.43.m | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 - 2 T + p T^{2} \) | 1.53.ac | 
|  | 59 | \( 1 - 8 T + p T^{2} \) | 1.59.ai | 
|  | 61 | \( 1 + 6 T + p T^{2} \) | 1.61.g | 
|  | 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i | 
|  | 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am | 
|  | 73 | \( 1 - 6 T + p T^{2} \) | 1.73.ag | 
|  | 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai | 
|  | 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m | 
|  | 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag | 
|  | 97 | \( 1 - 6 T + p T^{2} \) | 1.97.ag | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.16795143367172, −12.84344781518091, −12.35831602368008, −11.59292678073140, −11.24204911154939, −10.87071633695502, −10.34001836414714, −10.01597144123018, −9.471256871572980, −8.883996772024943, −8.405847480996443, −8.057731497751326, −7.665487175404254, −7.464644121630918, −6.568860378632595, −5.827808981989517, −5.458016689277529, −4.920250602794521, −4.575924437091968, −3.897907991509357, −3.421639798753338, −2.497198422176868, −1.996818101789398, −1.339046699993333, −0.8427063441357958, 0, 
0.8427063441357958, 1.339046699993333, 1.996818101789398, 2.497198422176868, 3.421639798753338, 3.897907991509357, 4.575924437091968, 4.920250602794521, 5.458016689277529, 5.827808981989517, 6.568860378632595, 7.464644121630918, 7.665487175404254, 8.057731497751326, 8.405847480996443, 8.883996772024943, 9.471256871572980, 10.01597144123018, 10.34001836414714, 10.87071633695502, 11.24204911154939, 11.59292678073140, 12.35831602368008, 12.84344781518091, 13.16795143367172
