Properties

Label 2-209814-1.1-c1-0-56
Degree $2$
Conductor $209814$
Sign $-1$
Analytic cond. $1675.37$
Root an. cond. $40.9313$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s + 12-s − 2·13-s + 16-s − 18-s − 8·23-s − 24-s − 5·25-s + 2·26-s + 27-s − 4·29-s − 32-s + 36-s + 4·37-s − 2·39-s + 8·43-s + 8·46-s − 12·47-s + 48-s − 7·49-s + 5·50-s − 2·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.288·12-s − 0.554·13-s + 1/4·16-s − 0.235·18-s − 1.66·23-s − 0.204·24-s − 25-s + 0.392·26-s + 0.192·27-s − 0.742·29-s − 0.176·32-s + 1/6·36-s + 0.657·37-s − 0.320·39-s + 1.21·43-s + 1.17·46-s − 1.75·47-s + 0.144·48-s − 49-s + 0.707·50-s − 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209814 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209814 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209814\)    =    \(2 \cdot 3 \cdot 11^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1675.37\)
Root analytic conductor: \(40.9313\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 209814,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
11 \( 1 \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12376499042288, −12.82069574450362, −12.29683213057936, −11.73397197836956, −11.41206795205425, −10.86061283422940, −10.27945619423845, −9.814541432398813, −9.493476371477883, −9.204919376393831, −8.285334769750139, −8.164870880749679, −7.639967571871631, −7.310656694312770, −6.390024844052945, −6.348333052041785, −5.530552870883062, −5.037092349220749, −4.240834640952207, −3.881776682845227, −3.223577549399149, −2.632529858410545, −1.915921517261931, −1.767470940324653, −0.7024902064940092, 0, 0.7024902064940092, 1.767470940324653, 1.915921517261931, 2.632529858410545, 3.223577549399149, 3.881776682845227, 4.240834640952207, 5.037092349220749, 5.530552870883062, 6.348333052041785, 6.390024844052945, 7.310656694312770, 7.639967571871631, 8.164870880749679, 8.285334769750139, 9.204919376393831, 9.493476371477883, 9.814541432398813, 10.27945619423845, 10.86061283422940, 11.41206795205425, 11.73397197836956, 12.29683213057936, 12.82069574450362, 13.12376499042288

Graph of the $Z$-function along the critical line