Properties

Label 2-208208-1.1-c1-0-12
Degree $2$
Conductor $208208$
Sign $1$
Analytic cond. $1662.54$
Root an. cond. $40.7743$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 7-s − 3·9-s − 11-s + 2·17-s + 8·23-s − 25-s − 2·29-s − 8·31-s + 2·35-s + 2·37-s − 10·41-s − 4·43-s + 6·45-s + 8·47-s + 49-s + 6·53-s + 2·55-s + 10·61-s + 3·63-s − 12·67-s + 16·71-s + 14·73-s + 77-s + 9·81-s − 4·85-s + 6·89-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.377·7-s − 9-s − 0.301·11-s + 0.485·17-s + 1.66·23-s − 1/5·25-s − 0.371·29-s − 1.43·31-s + 0.338·35-s + 0.328·37-s − 1.56·41-s − 0.609·43-s + 0.894·45-s + 1.16·47-s + 1/7·49-s + 0.824·53-s + 0.269·55-s + 1.28·61-s + 0.377·63-s − 1.46·67-s + 1.89·71-s + 1.63·73-s + 0.113·77-s + 81-s − 0.433·85-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208208\)    =    \(2^{4} \cdot 7 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1662.54\)
Root analytic conductor: \(40.7743\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.123836481\)
\(L(\frac12)\) \(\approx\) \(1.123836481\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98198968250827, −12.50914264069871, −12.07564204103089, −11.58188001578088, −11.20172997347882, −10.81150020677851, −10.31180027163838, −9.639591454777564, −9.254578983592839, −8.609554707033819, −8.431792653827763, −7.749247672967724, −7.283567920872325, −6.958461703017698, −6.251287809983228, −5.728191313913292, −5.111996270162468, −4.959495612406617, −3.912724948369508, −3.608184259406800, −3.176100617754049, −2.519723997436473, −1.922873172739074, −0.9407346595232828, −0.3562468144587981, 0.3562468144587981, 0.9407346595232828, 1.922873172739074, 2.519723997436473, 3.176100617754049, 3.608184259406800, 3.912724948369508, 4.959495612406617, 5.111996270162468, 5.728191313913292, 6.251287809983228, 6.958461703017698, 7.283567920872325, 7.749247672967724, 8.431792653827763, 8.609554707033819, 9.254578983592839, 9.639591454777564, 10.31180027163838, 10.81150020677851, 11.20172997347882, 11.58188001578088, 12.07564204103089, 12.50914264069871, 12.98198968250827

Graph of the $Z$-function along the critical line