Properties

Label 2-20800-1.1-c1-0-61
Degree $2$
Conductor $20800$
Sign $-1$
Analytic cond. $166.088$
Root an. cond. $12.8875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s + 2·11-s + 13-s − 2·17-s + 2·19-s + 2·23-s + 4·27-s + 6·29-s − 2·31-s − 4·33-s − 6·37-s − 2·39-s + 2·41-s − 6·43-s − 8·47-s − 7·49-s + 4·51-s − 2·53-s − 4·57-s + 6·59-s + 14·61-s − 4·69-s − 10·71-s + 2·73-s + 4·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s + 0.603·11-s + 0.277·13-s − 0.485·17-s + 0.458·19-s + 0.417·23-s + 0.769·27-s + 1.11·29-s − 0.359·31-s − 0.696·33-s − 0.986·37-s − 0.320·39-s + 0.312·41-s − 0.914·43-s − 1.16·47-s − 49-s + 0.560·51-s − 0.274·53-s − 0.529·57-s + 0.781·59-s + 1.79·61-s − 0.481·69-s − 1.18·71-s + 0.234·73-s + 0.450·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20800\)    =    \(2^{6} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(166.088\)
Root analytic conductor: \(12.8875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 20800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.13134491602851, −15.47538384309775, −14.77842154813901, −14.24229774991967, −13.76183514115511, −12.91548652610323, −12.66906269124138, −11.82267039910074, −11.46736354442121, −11.20351140526421, −10.26997783889035, −10.07946659107941, −9.159601842221872, −8.641610120785441, −8.071957810625793, −7.133483770927668, −6.636583943248121, −6.271887749854010, −5.424115367883541, −5.033192642126192, −4.344147691120846, −3.532237447675270, −2.820431627721373, −1.732479385667445, −0.9683890231844361, 0, 0.9683890231844361, 1.732479385667445, 2.820431627721373, 3.532237447675270, 4.344147691120846, 5.033192642126192, 5.424115367883541, 6.271887749854010, 6.636583943248121, 7.133483770927668, 8.071957810625793, 8.641610120785441, 9.159601842221872, 10.07946659107941, 10.26997783889035, 11.20351140526421, 11.46736354442121, 11.82267039910074, 12.66906269124138, 12.91548652610323, 13.76183514115511, 14.24229774991967, 14.77842154813901, 15.47538384309775, 16.13134491602851

Graph of the $Z$-function along the critical line