Properties

Label 2-202800-1.1-c1-0-40
Degree $2$
Conductor $202800$
Sign $1$
Analytic cond. $1619.36$
Root an. cond. $40.2413$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 6·17-s − 4·23-s − 27-s − 10·29-s − 6·37-s − 2·41-s − 4·43-s − 7·49-s − 6·51-s + 6·53-s + 6·61-s − 4·67-s + 4·69-s + 16·71-s − 2·73-s + 81-s − 4·83-s + 10·87-s + 6·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 6·111-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.45·17-s − 0.834·23-s − 0.192·27-s − 1.85·29-s − 0.986·37-s − 0.312·41-s − 0.609·43-s − 49-s − 0.840·51-s + 0.824·53-s + 0.768·61-s − 0.488·67-s + 0.481·69-s + 1.89·71-s − 0.234·73-s + 1/9·81-s − 0.439·83-s + 1.07·87-s + 0.635·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.569·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 202800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(202800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1619.36\)
Root analytic conductor: \(40.2413\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 202800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.237839188\)
\(L(\frac12)\) \(\approx\) \(1.237839188\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92280555623341, −12.64019514216595, −11.96895624677645, −11.71170202542030, −11.30391647903335, −10.64921546085594, −10.21915853269550, −9.890542396641557, −9.352555021927526, −8.843940029057325, −8.187091893722113, −7.767205299561588, −7.340319075807313, −6.783453045956309, −6.226122531118742, −5.735700786449318, −5.267382225234546, −4.932250744615634, −4.096980643445969, −3.585571407236725, −3.284314006113681, −2.282604011718207, −1.797643749017864, −1.144194041297169, −0.3453047296539916, 0.3453047296539916, 1.144194041297169, 1.797643749017864, 2.282604011718207, 3.284314006113681, 3.585571407236725, 4.096980643445969, 4.932250744615634, 5.267382225234546, 5.735700786449318, 6.226122531118742, 6.783453045956309, 7.340319075807313, 7.767205299561588, 8.187091893722113, 8.843940029057325, 9.352555021927526, 9.890542396641557, 10.21915853269550, 10.64921546085594, 11.30391647903335, 11.71170202542030, 11.96895624677645, 12.64019514216595, 12.92280555623341

Graph of the $Z$-function along the critical line