Properties

Label 2-200376-1.1-c1-0-5
Degree $2$
Conductor $200376$
Sign $1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s + 2·13-s − 2·17-s − 23-s − 25-s − 2·29-s − 8·35-s − 10·37-s − 6·41-s − 8·43-s + 8·47-s + 9·49-s + 6·53-s + 4·59-s − 14·61-s − 4·65-s + 8·67-s + 8·71-s + 6·73-s − 12·79-s − 12·83-s + 4·85-s + 2·89-s + 8·91-s + 10·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s + 0.554·13-s − 0.485·17-s − 0.208·23-s − 1/5·25-s − 0.371·29-s − 1.35·35-s − 1.64·37-s − 0.937·41-s − 1.21·43-s + 1.16·47-s + 9/7·49-s + 0.824·53-s + 0.520·59-s − 1.79·61-s − 0.496·65-s + 0.977·67-s + 0.949·71-s + 0.702·73-s − 1.35·79-s − 1.31·83-s + 0.433·85-s + 0.211·89-s + 0.838·91-s + 1.01·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.752126878\)
\(L(\frac12)\) \(\approx\) \(1.752126878\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14365656048216, −12.33523573081618, −12.13012694510525, −11.53868951220158, −11.28606517037464, −10.89185994685751, −10.29090283332743, −9.934795422906104, −9.002364039666773, −8.722839972353804, −8.277927979040893, −7.938151529599118, −7.272976985838575, −7.057347235733811, −6.306742623057956, −5.675331576646378, −5.181977732609552, −4.686580541974506, −4.222674517787585, −3.642913103590413, −3.262732750747147, −2.243518568816602, −1.848419840149222, −1.225852467417351, −0.3844008005240905, 0.3844008005240905, 1.225852467417351, 1.848419840149222, 2.243518568816602, 3.262732750747147, 3.642913103590413, 4.222674517787585, 4.686580541974506, 5.181977732609552, 5.675331576646378, 6.306742623057956, 7.057347235733811, 7.272976985838575, 7.938151529599118, 8.277927979040893, 8.722839972353804, 9.002364039666773, 9.934795422906104, 10.29090283332743, 10.89185994685751, 11.28606517037464, 11.53868951220158, 12.13012694510525, 12.33523573081618, 13.14365656048216

Graph of the $Z$-function along the critical line