Properties

Label 200376.k
Number of curves $4$
Conductor $200376$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 200376.k have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 200376.k do not have complex multiplication.

Modular form 200376.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 4 q^{7} + 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 200376.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
200376.k1 200376c3 \([0, 0, 0, -819291, 241541894]\) \(45989074372/7555707\) \(9992144459416660992\) \([2]\) \(3932160\) \(2.3673\)  
200376.k2 200376c2 \([0, 0, 0, -231231, -39197950]\) \(4135597648/385641\) \(127499007752481024\) \([2, 2]\) \(1966080\) \(2.0208\)  
200376.k3 200376c1 \([0, 0, 0, -225786, -41294275]\) \(61604313088/621\) \(12832025739984\) \([2]\) \(983040\) \(1.6742\) \(\Gamma_0(N)\)-optimal
200376.k4 200376c4 \([0, 0, 0, 269709, -185772994]\) \(1640689628/12223143\) \(-16164656808966724608\) \([2]\) \(3932160\) \(2.3673\)