Properties

Label 2-198744-1.1-c1-0-6
Degree $2$
Conductor $198744$
Sign $1$
Analytic cond. $1586.97$
Root an. cond. $39.8369$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 4·11-s + 2·15-s − 2·17-s − 4·19-s − 25-s − 27-s − 2·29-s − 4·33-s + 2·37-s − 6·41-s + 4·43-s − 2·45-s − 8·47-s + 2·51-s − 10·53-s − 8·55-s + 4·57-s − 4·59-s + 2·61-s + 4·67-s + 2·73-s + 75-s + 8·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 1.20·11-s + 0.516·15-s − 0.485·17-s − 0.917·19-s − 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.696·33-s + 0.328·37-s − 0.937·41-s + 0.609·43-s − 0.298·45-s − 1.16·47-s + 0.280·51-s − 1.37·53-s − 1.07·55-s + 0.529·57-s − 0.520·59-s + 0.256·61-s + 0.488·67-s + 0.234·73-s + 0.115·75-s + 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198744\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1586.97\)
Root analytic conductor: \(39.8369\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 198744,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5103532124\)
\(L(\frac12)\) \(\approx\) \(0.5103532124\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.91935324317456, −12.52530565662164, −12.09739496833942, −11.54215203382722, −11.33400838684112, −10.89727758857358, −10.35108725512108, −9.698166094506648, −9.370579698393474, −8.762938135291325, −8.268136813604129, −7.875665457306942, −7.193676647818878, −6.818720011295170, −6.293007014302012, −5.965533834368151, −5.184322869497133, −4.577112272674247, −4.284908358998643, −3.664693990813824, −3.301302421932513, −2.355866556975317, −1.735499310260932, −1.120630312779711, −0.2269549421159036, 0.2269549421159036, 1.120630312779711, 1.735499310260932, 2.355866556975317, 3.301302421932513, 3.664693990813824, 4.284908358998643, 4.577112272674247, 5.184322869497133, 5.965533834368151, 6.293007014302012, 6.818720011295170, 7.193676647818878, 7.875665457306942, 8.268136813604129, 8.762938135291325, 9.370579698393474, 9.698166094506648, 10.35108725512108, 10.89727758857358, 11.33400838684112, 11.54215203382722, 12.09739496833942, 12.52530565662164, 12.91935324317456

Graph of the $Z$-function along the critical line