Properties

Label 2-198550-1.1-c1-0-84
Degree $2$
Conductor $198550$
Sign $1$
Analytic cond. $1585.42$
Root an. cond. $39.8174$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 3·9-s − 11-s + 2·13-s + 16-s + 2·17-s + 3·18-s + 22-s + 4·23-s − 2·26-s − 6·29-s − 8·31-s − 32-s − 2·34-s − 3·36-s + 6·37-s − 2·41-s − 4·43-s − 44-s − 4·46-s − 12·47-s − 7·49-s + 2·52-s − 10·53-s + 6·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 9-s − 0.301·11-s + 0.554·13-s + 1/4·16-s + 0.485·17-s + 0.707·18-s + 0.213·22-s + 0.834·23-s − 0.392·26-s − 1.11·29-s − 1.43·31-s − 0.176·32-s − 0.342·34-s − 1/2·36-s + 0.986·37-s − 0.312·41-s − 0.609·43-s − 0.150·44-s − 0.589·46-s − 1.75·47-s − 49-s + 0.277·52-s − 1.37·53-s + 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198550\)    =    \(2 \cdot 5^{2} \cdot 11 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1585.42\)
Root analytic conductor: \(39.8174\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 198550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
11 \( 1 + T \)
19 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31170647759630, −13.03909100131941, −12.75118721588352, −11.85629866140620, −11.60338652989933, −11.06293126056202, −10.88940390904666, −10.24491448428929, −9.610636174369771, −9.327777874956897, −8.832271566959421, −8.294859693226594, −7.899759238889167, −7.514448460983957, −6.771196955139177, −6.439158398939614, −5.743857804667175, −5.421388096596447, −4.888940285180026, −4.078066458732183, −3.386521067504343, −3.064933428919448, −2.461695183282345, −1.589885038418505, −1.298503621771160, 0, 0, 1.298503621771160, 1.589885038418505, 2.461695183282345, 3.064933428919448, 3.386521067504343, 4.078066458732183, 4.888940285180026, 5.421388096596447, 5.743857804667175, 6.439158398939614, 6.771196955139177, 7.514448460983957, 7.899759238889167, 8.294859693226594, 8.832271566959421, 9.327777874956897, 9.610636174369771, 10.24491448428929, 10.88940390904666, 11.06293126056202, 11.60338652989933, 11.85629866140620, 12.75118721588352, 13.03909100131941, 13.31170647759630

Graph of the $Z$-function along the critical line