Properties

Label 2-198450-1.1-c1-0-77
Degree $2$
Conductor $198450$
Sign $1$
Analytic cond. $1584.63$
Root an. cond. $39.8074$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 3·11-s − 4·13-s + 16-s + 6·17-s − 2·19-s + 3·22-s + 3·23-s + 4·26-s + 9·29-s + 4·31-s − 32-s − 6·34-s + 10·37-s + 2·38-s − 5·43-s − 3·44-s − 3·46-s − 4·52-s − 3·53-s − 9·58-s + 6·59-s − 8·61-s − 4·62-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 0.904·11-s − 1.10·13-s + 1/4·16-s + 1.45·17-s − 0.458·19-s + 0.639·22-s + 0.625·23-s + 0.784·26-s + 1.67·29-s + 0.718·31-s − 0.176·32-s − 1.02·34-s + 1.64·37-s + 0.324·38-s − 0.762·43-s − 0.452·44-s − 0.442·46-s − 0.554·52-s − 0.412·53-s − 1.18·58-s + 0.781·59-s − 1.02·61-s − 0.508·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198450\)    =    \(2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1584.63\)
Root analytic conductor: \(39.8074\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 198450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.008739664\)
\(L(\frac12)\) \(\approx\) \(2.008739664\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96890021708583, −12.53696036872313, −12.02413156424373, −11.75911150032608, −11.12614764418637, −10.49101161971426, −10.22158526665557, −9.897682171909382, −9.319228868981211, −8.850412273706748, −8.173169193778302, −7.758265899429178, −7.663407122113743, −6.803013644120757, −6.461666296446496, −5.843517646470003, −5.249589050866198, −4.771402584919170, −4.351543334799464, −3.274168043358070, −3.034011896282092, −2.413718511504140, −1.862875809429970, −0.8867416541956017, −0.5759252482518035, 0.5759252482518035, 0.8867416541956017, 1.862875809429970, 2.413718511504140, 3.034011896282092, 3.274168043358070, 4.351543334799464, 4.771402584919170, 5.249589050866198, 5.843517646470003, 6.461666296446496, 6.803013644120757, 7.663407122113743, 7.758265899429178, 8.173169193778302, 8.850412273706748, 9.319228868981211, 9.897682171909382, 10.22158526665557, 10.49101161971426, 11.12614764418637, 11.75911150032608, 12.02413156424373, 12.53696036872313, 12.96890021708583

Graph of the $Z$-function along the critical line