Properties

Label 2-1976-1.1-c1-0-49
Degree $2$
Conductor $1976$
Sign $-1$
Analytic cond. $15.7784$
Root an. cond. $3.97220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s − 3·9-s − 6·11-s − 13-s + 17-s − 19-s − 3·23-s − 25-s − 6·29-s − 9·31-s + 4·35-s − 37-s + 3·41-s − 3·43-s − 6·45-s − 6·47-s − 3·49-s + 6·53-s − 12·55-s + 5·59-s + 7·61-s − 6·63-s − 2·65-s + 3·67-s + 8·71-s − 6·73-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s − 9-s − 1.80·11-s − 0.277·13-s + 0.242·17-s − 0.229·19-s − 0.625·23-s − 1/5·25-s − 1.11·29-s − 1.61·31-s + 0.676·35-s − 0.164·37-s + 0.468·41-s − 0.457·43-s − 0.894·45-s − 0.875·47-s − 3/7·49-s + 0.824·53-s − 1.61·55-s + 0.650·59-s + 0.896·61-s − 0.755·63-s − 0.248·65-s + 0.366·67-s + 0.949·71-s − 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1976\)    =    \(2^{3} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(15.7784\)
Root analytic conductor: \(3.97220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - T + p T^{2} \) 1.17.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.714468199680868640199167376738, −7.992841858497340642119138750325, −7.42860116284048239333542391102, −6.18515243791468325744523930807, −5.34746621749888827445294896627, −5.17914235246828118884988101265, −3.70113458490097721825929356794, −2.52387993244914225818904652757, −1.91105420895903679879612966377, 0, 1.91105420895903679879612966377, 2.52387993244914225818904652757, 3.70113458490097721825929356794, 5.17914235246828118884988101265, 5.34746621749888827445294896627, 6.18515243791468325744523930807, 7.42860116284048239333542391102, 7.992841858497340642119138750325, 8.714468199680868640199167376738

Graph of the $Z$-function along the critical line