Properties

Label 2-19536-1.1-c1-0-18
Degree $2$
Conductor $19536$
Sign $-1$
Analytic cond. $155.995$
Root an. cond. $12.4898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 11-s + 2·13-s + 2·15-s + 6·17-s − 25-s − 27-s + 2·29-s − 33-s + 37-s − 2·39-s + 2·41-s − 2·45-s − 8·47-s − 7·49-s − 6·51-s − 10·53-s − 2·55-s − 12·59-s + 2·61-s − 4·65-s + 4·67-s + 8·71-s − 6·73-s + 75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.301·11-s + 0.554·13-s + 0.516·15-s + 1.45·17-s − 1/5·25-s − 0.192·27-s + 0.371·29-s − 0.174·33-s + 0.164·37-s − 0.320·39-s + 0.312·41-s − 0.298·45-s − 1.16·47-s − 49-s − 0.840·51-s − 1.37·53-s − 0.269·55-s − 1.56·59-s + 0.256·61-s − 0.496·65-s + 0.488·67-s + 0.949·71-s − 0.702·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19536\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(155.995\)
Root analytic conductor: \(12.4898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19536,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
37 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.96649245985693, −15.57931970299436, −14.92735457003459, −14.33108654458431, −13.90862668421972, −13.05836029996491, −12.56168614414692, −12.10249160188920, −11.47026464312395, −11.21757460801705, −10.47907030988301, −9.870222688970412, −9.362830879267184, −8.541838774103123, −7.828812975168652, −7.692562558836796, −6.707192046576153, −6.254731092504112, −5.560775896496036, −4.871462051602638, −4.234511421801445, −3.514255998688017, −3.039968815460512, −1.741845791262163, −1.011871038178776, 0, 1.011871038178776, 1.741845791262163, 3.039968815460512, 3.514255998688017, 4.234511421801445, 4.871462051602638, 5.560775896496036, 6.254731092504112, 6.707192046576153, 7.692562558836796, 7.828812975168652, 8.541838774103123, 9.362830879267184, 9.870222688970412, 10.47907030988301, 11.21757460801705, 11.47026464312395, 12.10249160188920, 12.56168614414692, 13.05836029996491, 13.90862668421972, 14.33108654458431, 14.92735457003459, 15.57931970299436, 15.96649245985693

Graph of the $Z$-function along the critical line