Properties

Label 2-193550-1.1-c1-0-28
Degree $2$
Conductor $193550$
Sign $-1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 8-s + 9-s − 2·11-s − 2·12-s + 13-s + 16-s − 2·17-s − 18-s − 6·19-s + 2·22-s + 2·23-s + 2·24-s − 26-s + 4·27-s + 6·29-s − 7·31-s − 32-s + 4·33-s + 2·34-s + 36-s + 6·37-s + 6·38-s − 2·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.603·11-s − 0.577·12-s + 0.277·13-s + 1/4·16-s − 0.485·17-s − 0.235·18-s − 1.37·19-s + 0.426·22-s + 0.417·23-s + 0.408·24-s − 0.196·26-s + 0.769·27-s + 1.11·29-s − 1.25·31-s − 0.176·32-s + 0.696·33-s + 0.342·34-s + 1/6·36-s + 0.986·37-s + 0.973·38-s − 0.320·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 6 T + p T^{2} \) 1.73.g
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.18997896431744, −12.75756976115251, −12.17813014725232, −11.97933057663917, −11.16604767808508, −10.93470181517817, −10.71237195132845, −10.16191192892899, −9.624062105680580, −9.000475728395481, −8.629469494269949, −8.115159990814358, −7.634819575534442, −6.948477418127445, −6.516313225613586, −6.237750481039997, −5.530772776110119, −5.234892019608423, −4.449251485772569, −4.158439031587596, −3.153137419237933, −2.703240320967884, −1.997584942979371, −1.348732785425058, −0.5609493322293974, 0, 0.5609493322293974, 1.348732785425058, 1.997584942979371, 2.703240320967884, 3.153137419237933, 4.158439031587596, 4.449251485772569, 5.234892019608423, 5.530772776110119, 6.237750481039997, 6.516313225613586, 6.948477418127445, 7.634819575534442, 8.115159990814358, 8.629469494269949, 9.000475728395481, 9.624062105680580, 10.16191192892899, 10.71237195132845, 10.93470181517817, 11.16604767808508, 11.97933057663917, 12.17813014725232, 12.75756976115251, 13.18997896431744

Graph of the $Z$-function along the critical line