Properties

Label 2-1925-1.1-c1-0-57
Degree $2$
Conductor $1925$
Sign $-1$
Analytic cond. $15.3712$
Root an. cond. $3.92061$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 7-s − 2·9-s − 11-s + 2·12-s + 4·13-s + 4·16-s + 6·17-s + 2·19-s + 21-s − 3·23-s + 5·27-s + 2·28-s − 6·29-s + 5·31-s + 33-s + 4·36-s − 11·37-s − 4·39-s + 6·41-s − 8·43-s + 2·44-s − 4·48-s + 49-s − 6·51-s − 8·52-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 0.377·7-s − 2/3·9-s − 0.301·11-s + 0.577·12-s + 1.10·13-s + 16-s + 1.45·17-s + 0.458·19-s + 0.218·21-s − 0.625·23-s + 0.962·27-s + 0.377·28-s − 1.11·29-s + 0.898·31-s + 0.174·33-s + 2/3·36-s − 1.80·37-s − 0.640·39-s + 0.937·41-s − 1.21·43-s + 0.301·44-s − 0.577·48-s + 1/7·49-s − 0.840·51-s − 1.10·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1925\)    =    \(5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(15.3712\)
Root analytic conductor: \(3.92061\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 + T + p T^{2} \) 1.3.b
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.743586877620686700898109882486, −8.202448931686796546309015508759, −7.31186429850279787387428732586, −6.04970000403761396109213191861, −5.68386783434200206154956552258, −4.87928264412515146072069299972, −3.73926688085560159971821267297, −3.10166491804018257633458252067, −1.28514290574555087056554551119, 0, 1.28514290574555087056554551119, 3.10166491804018257633458252067, 3.73926688085560159971821267297, 4.87928264412515146072069299972, 5.68386783434200206154956552258, 6.04970000403761396109213191861, 7.31186429850279787387428732586, 8.202448931686796546309015508759, 8.743586877620686700898109882486

Graph of the $Z$-function along the critical line