Properties

Label 2-19110-1.1-c1-0-69
Degree $2$
Conductor $19110$
Sign $-1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 12-s + 13-s + 15-s + 16-s + 6·17-s − 18-s + 20-s − 4·23-s − 24-s + 25-s − 26-s + 27-s − 10·29-s − 30-s − 32-s − 6·34-s + 36-s − 6·37-s + 39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s + 0.277·13-s + 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.223·20-s − 0.834·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 1.85·29-s − 0.182·30-s − 0.176·32-s − 1.02·34-s + 1/6·36-s − 0.986·37-s + 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.10198830072135, −15.42516774270268, −14.96178951955221, −14.35768143679007, −13.90129360403642, −13.35128189793387, −12.59232149392846, −12.23236569434546, −11.48617793539639, −10.86928724904654, −10.29083604279062, −9.699129783694530, −9.399676548996446, −8.701364719917595, −8.007154269343661, −7.732606419425324, −6.942985993565964, −6.345744716779139, −5.567920695303564, −5.131409776171404, −3.908551158392335, −3.489286413187119, −2.654987692801939, −1.820691860587158, −1.290942851856955, 0, 1.290942851856955, 1.820691860587158, 2.654987692801939, 3.489286413187119, 3.908551158392335, 5.131409776171404, 5.567920695303564, 6.345744716779139, 6.942985993565964, 7.732606419425324, 8.007154269343661, 8.701364719917595, 9.399676548996446, 9.699129783694530, 10.29083604279062, 10.86928724904654, 11.48617793539639, 12.23236569434546, 12.59232149392846, 13.35128189793387, 13.90129360403642, 14.35768143679007, 14.96178951955221, 15.42516774270268, 16.10198830072135

Graph of the $Z$-function along the critical line