Properties

Label 2-187200-1.1-c1-0-297
Degree $2$
Conductor $187200$
Sign $-1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 6·11-s + 13-s − 6·17-s − 2·19-s + 6·23-s − 6·29-s + 2·31-s + 2·37-s + 6·41-s + 2·43-s − 12·47-s + 9·49-s − 6·53-s + 6·59-s − 2·61-s − 4·67-s + 6·71-s + 10·73-s − 24·77-s − 4·79-s + 6·89-s + 4·91-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.51·7-s − 1.80·11-s + 0.277·13-s − 1.45·17-s − 0.458·19-s + 1.25·23-s − 1.11·29-s + 0.359·31-s + 0.328·37-s + 0.937·41-s + 0.304·43-s − 1.75·47-s + 9/7·49-s − 0.824·53-s + 0.781·59-s − 0.256·61-s − 0.488·67-s + 0.712·71-s + 1.17·73-s − 2.73·77-s − 0.450·79-s + 0.635·89-s + 0.419·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28948148958603, −12.91570226899834, −12.66523258643648, −11.78568474764030, −11.24793398956584, −11.06294194557865, −10.74504945765090, −10.21780917940019, −9.482117095200712, −9.056619375702383, −8.429974809323649, −8.165892141162026, −7.659852247084410, −7.272927440891322, −6.580033440000657, −6.076581738930449, −5.255225401855734, −5.127226823947519, −4.562435279102950, −4.126683138727562, −3.271181753817916, −2.635112370557552, −2.148160366356119, −1.662480337497124, −0.7885789909992404, 0, 0.7885789909992404, 1.662480337497124, 2.148160366356119, 2.635112370557552, 3.271181753817916, 4.126683138727562, 4.562435279102950, 5.127226823947519, 5.255225401855734, 6.076581738930449, 6.580033440000657, 7.272927440891322, 7.659852247084410, 8.165892141162026, 8.429974809323649, 9.056619375702383, 9.482117095200712, 10.21780917940019, 10.74504945765090, 11.06294194557865, 11.24793398956584, 11.78568474764030, 12.66523258643648, 12.91570226899834, 13.28948148958603

Graph of the $Z$-function along the critical line