Properties

Label 2-187200-1.1-c1-0-93
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 6·11-s − 13-s + 19-s + 6·23-s + 3·29-s + 8·31-s + 37-s − 9·41-s − 8·43-s − 3·47-s − 3·49-s − 3·53-s + 6·59-s + 10·61-s + 13·67-s + 9·71-s − 4·73-s − 12·77-s + 11·79-s − 12·83-s − 6·89-s − 2·91-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.755·7-s − 1.80·11-s − 0.277·13-s + 0.229·19-s + 1.25·23-s + 0.557·29-s + 1.43·31-s + 0.164·37-s − 1.40·41-s − 1.21·43-s − 0.437·47-s − 3/7·49-s − 0.412·53-s + 0.781·59-s + 1.28·61-s + 1.58·67-s + 1.06·71-s − 0.468·73-s − 1.36·77-s + 1.23·79-s − 1.31·83-s − 0.635·89-s − 0.209·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.034233490\)
\(L(\frac12)\) \(\approx\) \(2.034233490\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08397088072420, −12.80171442132459, −12.15382751716536, −11.67010452173621, −11.20866412646871, −10.84721673949750, −10.22368206089553, −9.927425436160987, −9.492103994670448, −8.527495907421245, −8.347756239058381, −8.008490268317246, −7.431580814640011, −6.700877908173978, −6.618887791239840, −5.536999743591046, −5.177322905442943, −4.956357405387216, −4.376972917761239, −3.548090354134731, −2.935352009793031, −2.560903737667742, −1.890313732759803, −1.152899667876911, −0.4278523290622178, 0.4278523290622178, 1.152899667876911, 1.890313732759803, 2.560903737667742, 2.935352009793031, 3.548090354134731, 4.376972917761239, 4.956357405387216, 5.177322905442943, 5.536999743591046, 6.618887791239840, 6.700877908173978, 7.431580814640011, 8.008490268317246, 8.347756239058381, 8.527495907421245, 9.492103994670448, 9.927425436160987, 10.22368206089553, 10.84721673949750, 11.20866412646871, 11.67010452173621, 12.15382751716536, 12.80171442132459, 13.08397088072420

Graph of the $Z$-function along the critical line