Properties

Label 2-187200-1.1-c1-0-63
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·11-s + 13-s + 2·17-s − 4·19-s − 8·23-s − 2·29-s + 8·31-s + 6·37-s + 6·41-s + 4·43-s + 8·47-s − 7·49-s − 6·53-s + 12·59-s + 2·61-s + 4·67-s + 6·73-s − 16·79-s − 4·83-s − 10·89-s − 18·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.20·11-s + 0.277·13-s + 0.485·17-s − 0.917·19-s − 1.66·23-s − 0.371·29-s + 1.43·31-s + 0.986·37-s + 0.937·41-s + 0.609·43-s + 1.16·47-s − 49-s − 0.824·53-s + 1.56·59-s + 0.256·61-s + 0.488·67-s + 0.702·73-s − 1.80·79-s − 0.439·83-s − 1.05·89-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.468936594\)
\(L(\frac12)\) \(\approx\) \(1.468936594\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.02262195485945, −12.64987661973890, −12.38373635667454, −11.54666531891568, −11.35996054808506, −10.70764687185735, −10.28000002200442, −9.853990848646887, −9.516769124645556, −8.648631597422225, −8.349962692553619, −7.838235042656828, −7.560058292136114, −6.798073158442697, −6.247065859653020, −5.820449381389047, −5.404168291030624, −4.696142961900060, −4.138638914425153, −3.831023563686522, −2.831021830759423, −2.581196401835364, −1.940472554110014, −1.128232316497176, −0.3638917140422578, 0.3638917140422578, 1.128232316497176, 1.940472554110014, 2.581196401835364, 2.831021830759423, 3.831023563686522, 4.138638914425153, 4.696142961900060, 5.404168291030624, 5.820449381389047, 6.247065859653020, 6.798073158442697, 7.560058292136114, 7.838235042656828, 8.349962692553619, 8.648631597422225, 9.516769124645556, 9.853990848646887, 10.28000002200442, 10.70764687185735, 11.35996054808506, 11.54666531891568, 12.38373635667454, 12.64987661973890, 13.02262195485945

Graph of the $Z$-function along the critical line