Properties

Label 2-183744-1.1-c1-0-41
Degree $2$
Conductor $183744$
Sign $1$
Analytic cond. $1467.20$
Root an. cond. $38.3040$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 11-s + 4·13-s + 6·17-s − 4·19-s − 5·25-s − 29-s + 4·31-s − 2·37-s − 6·41-s + 8·43-s + 6·47-s + 9·49-s + 6·59-s − 2·61-s − 4·67-s − 4·73-s + 4·77-s + 10·79-s − 12·83-s − 12·89-s + 16·91-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.51·7-s + 0.301·11-s + 1.10·13-s + 1.45·17-s − 0.917·19-s − 25-s − 0.185·29-s + 0.718·31-s − 0.328·37-s − 0.937·41-s + 1.21·43-s + 0.875·47-s + 9/7·49-s + 0.781·59-s − 0.256·61-s − 0.488·67-s − 0.468·73-s + 0.455·77-s + 1.12·79-s − 1.31·83-s − 1.27·89-s + 1.67·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 183744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 183744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(183744\)    =    \(2^{6} \cdot 3^{2} \cdot 11 \cdot 29\)
Sign: $1$
Analytic conductor: \(1467.20\)
Root analytic conductor: \(38.3040\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 183744,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.139503999\)
\(L(\frac12)\) \(\approx\) \(4.139503999\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
29 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17923286524785, −12.61767903361409, −12.02969207334776, −11.82158383289109, −11.19273387294886, −10.90734701469700, −10.36015577749858, −9.923676929672644, −9.308064489001227, −8.675523425425961, −8.320974465989526, −8.037977200459484, −7.380642530932746, −7.018135135785367, −6.098387404860162, −5.899784558260253, −5.328916462342299, −4.751224005243037, −4.122483534317142, −3.840169744497886, −3.108107274505609, −2.366639537558417, −1.689119859524538, −1.313100776738069, −0.6091156942774175, 0.6091156942774175, 1.313100776738069, 1.689119859524538, 2.366639537558417, 3.108107274505609, 3.840169744497886, 4.122483534317142, 4.751224005243037, 5.328916462342299, 5.899784558260253, 6.098387404860162, 7.018135135785367, 7.380642530932746, 8.037977200459484, 8.320974465989526, 8.675523425425961, 9.308064489001227, 9.923676929672644, 10.36015577749858, 10.90734701469700, 11.19273387294886, 11.82158383289109, 12.02969207334776, 12.61767903361409, 13.17923286524785

Graph of the $Z$-function along the critical line