Properties

Label 2-18240-1.1-c1-0-56
Degree $2$
Conductor $18240$
Sign $-1$
Analytic cond. $145.647$
Root an. cond. $12.0684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 2·7-s + 9-s + 2·11-s − 4·13-s − 15-s − 2·17-s − 19-s + 2·21-s − 4·23-s + 25-s + 27-s + 8·31-s + 2·33-s − 2·35-s − 8·37-s − 4·39-s − 8·41-s − 6·43-s − 45-s + 12·47-s − 3·49-s − 2·51-s + 6·53-s − 2·55-s − 57-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.603·11-s − 1.10·13-s − 0.258·15-s − 0.485·17-s − 0.229·19-s + 0.436·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s + 1.43·31-s + 0.348·33-s − 0.338·35-s − 1.31·37-s − 0.640·39-s − 1.24·41-s − 0.914·43-s − 0.149·45-s + 1.75·47-s − 3/7·49-s − 0.280·51-s + 0.824·53-s − 0.269·55-s − 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(145.647\)
Root analytic conductor: \(12.0684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.87015500083846, −15.35526118037101, −15.03876428771849, −14.42681638272214, −13.83208089485127, −13.62754658657594, −12.60930655671823, −12.11004605353570, −11.81102113790751, −11.10031050204416, −10.38145158011893, −9.943006485520868, −9.225963711665705, −8.626904568169735, −8.100773926233191, −7.688702607912627, −6.749816856314759, −6.615530936928657, −5.332760017807483, −4.927313745114399, −4.126574560834554, −3.697664945568671, −2.663393399353302, −2.098206588134155, −1.226774211350724, 0, 1.226774211350724, 2.098206588134155, 2.663393399353302, 3.697664945568671, 4.126574560834554, 4.927313745114399, 5.332760017807483, 6.615530936928657, 6.749816856314759, 7.688702607912627, 8.100773926233191, 8.626904568169735, 9.225963711665705, 9.943006485520868, 10.38145158011893, 11.10031050204416, 11.81102113790751, 12.11004605353570, 12.60930655671823, 13.62754658657594, 13.83208089485127, 14.42681638272214, 15.03876428771849, 15.35526118037101, 15.87015500083846

Graph of the $Z$-function along the critical line