Properties

Label 2-182070-1.1-c1-0-54
Degree $2$
Conductor $182070$
Sign $-1$
Analytic cond. $1453.83$
Root an. cond. $38.1292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 7-s − 8-s + 10-s − 4·11-s + 2·13-s − 14-s + 16-s − 8·19-s − 20-s + 4·22-s + 25-s − 2·26-s + 28-s − 2·29-s + 8·31-s − 32-s − 35-s + 2·37-s + 8·38-s + 40-s + 2·41-s + 4·43-s − 4·44-s + 8·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s − 0.353·8-s + 0.316·10-s − 1.20·11-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 1.83·19-s − 0.223·20-s + 0.852·22-s + 1/5·25-s − 0.392·26-s + 0.188·28-s − 0.371·29-s + 1.43·31-s − 0.176·32-s − 0.169·35-s + 0.328·37-s + 1.29·38-s + 0.158·40-s + 0.312·41-s + 0.609·43-s − 0.603·44-s + 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1453.83\)
Root analytic conductor: \(38.1292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 182070,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25952775686100, −12.92751461089109, −12.29282107876363, −12.07324394804999, −11.19945735017312, −10.97456241420307, −10.70476876202052, −10.04777212558107, −9.725752499887359, −8.906878647200330, −8.529267309438003, −8.231987264624627, −7.746857455495594, −7.253393710708614, −6.700127992979045, −6.123835790520487, −5.697916655410158, −5.050339256454816, −4.346780385236036, −4.084324520864932, −3.250703957320343, −2.506950143248016, −2.307587388147208, −1.407821174091147, −0.7031728802117200, 0, 0.7031728802117200, 1.407821174091147, 2.307587388147208, 2.506950143248016, 3.250703957320343, 4.084324520864932, 4.346780385236036, 5.050339256454816, 5.697916655410158, 6.123835790520487, 6.700127992979045, 7.253393710708614, 7.746857455495594, 8.231987264624627, 8.529267309438003, 8.906878647200330, 9.725752499887359, 10.04777212558107, 10.70476876202052, 10.97456241420307, 11.19945735017312, 12.07324394804999, 12.29282107876363, 12.92751461089109, 13.25952775686100

Graph of the $Z$-function along the critical line