Properties

Label 2-18176-1.1-c1-0-1
Degree $2$
Conductor $18176$
Sign $1$
Analytic cond. $145.136$
Root an. cond. $12.0472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 2·11-s − 2·13-s + 6·17-s + 8·19-s + 8·23-s − 5·25-s + 4·29-s − 8·31-s − 8·37-s + 6·41-s − 8·43-s − 8·47-s − 7·49-s + 10·53-s + 2·59-s + 10·61-s − 14·67-s − 71-s + 14·73-s + 9·81-s + 12·83-s + 6·89-s − 2·97-s + 6·99-s + 101-s + 103-s + ⋯
L(s)  = 1  − 9-s − 0.603·11-s − 0.554·13-s + 1.45·17-s + 1.83·19-s + 1.66·23-s − 25-s + 0.742·29-s − 1.43·31-s − 1.31·37-s + 0.937·41-s − 1.21·43-s − 1.16·47-s − 49-s + 1.37·53-s + 0.260·59-s + 1.28·61-s − 1.71·67-s − 0.118·71-s + 1.63·73-s + 81-s + 1.31·83-s + 0.635·89-s − 0.203·97-s + 0.603·99-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18176\)    =    \(2^{8} \cdot 71\)
Sign: $1$
Analytic conductor: \(145.136\)
Root analytic conductor: \(12.0472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18176,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.724630751\)
\(L(\frac12)\) \(\approx\) \(1.724630751\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
71 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.95373928151980, −15.05638091186653, −14.72687687300093, −14.19578634912464, −13.61722090102447, −13.13026036104957, −12.38033408530822, −11.84356746537596, −11.50699146304870, −10.76229899477929, −10.18790181142589, −9.550853584479386, −9.151446223789885, −8.300627470193035, −7.815938221448323, −7.280698100754651, −6.648227000108450, −5.614438069563625, −5.323368796642002, −4.927618571017279, −3.557516040637573, −3.264205710361678, −2.551594744169543, −1.517792884389967, −0.5627325281046834, 0.5627325281046834, 1.517792884389967, 2.551594744169543, 3.264205710361678, 3.557516040637573, 4.927618571017279, 5.323368796642002, 5.614438069563625, 6.648227000108450, 7.280698100754651, 7.815938221448323, 8.300627470193035, 9.151446223789885, 9.550853584479386, 10.18790181142589, 10.76229899477929, 11.50699146304870, 11.84356746537596, 12.38033408530822, 13.13026036104957, 13.61722090102447, 14.19578634912464, 14.72687687300093, 15.05638091186653, 15.95373928151980

Graph of the $Z$-function along the critical line