Properties

Label 2-180336-1.1-c1-0-6
Degree $2$
Conductor $180336$
Sign $1$
Analytic cond. $1439.99$
Root an. cond. $37.9472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s − 4·11-s − 13-s − 4·19-s − 2·21-s − 2·23-s − 5·25-s − 27-s + 4·29-s − 2·31-s + 4·33-s + 39-s − 2·41-s − 4·43-s + 4·47-s − 3·49-s + 6·53-s + 4·57-s + 4·59-s − 4·61-s + 2·63-s − 4·67-s + 2·69-s − 2·71-s + 10·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s − 1.20·11-s − 0.277·13-s − 0.917·19-s − 0.436·21-s − 0.417·23-s − 25-s − 0.192·27-s + 0.742·29-s − 0.359·31-s + 0.696·33-s + 0.160·39-s − 0.312·41-s − 0.609·43-s + 0.583·47-s − 3/7·49-s + 0.824·53-s + 0.529·57-s + 0.520·59-s − 0.512·61-s + 0.251·63-s − 0.488·67-s + 0.240·69-s − 0.237·71-s + 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180336\)    =    \(2^{4} \cdot 3 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1439.99\)
Root analytic conductor: \(37.9472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 180336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6377231388\)
\(L(\frac12)\) \(\approx\) \(0.6377231388\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00200201385415, −12.79651708791311, −12.01699302637923, −11.88735638149181, −11.22758606695588, −10.80349483178514, −10.38990638206494, −10.00169219530598, −9.482062116301028, −8.748424384432361, −8.262239449837357, −7.953053280630099, −7.378843553824326, −6.917085124522783, −6.251524010778093, −5.797247434405595, −5.266009489642633, −4.854646790442334, −4.328275375951974, −3.801622638175366, −3.020580990802522, −2.309227829939114, −1.938026860053978, −1.158754693481256, −0.2443752600103664, 0.2443752600103664, 1.158754693481256, 1.938026860053978, 2.309227829939114, 3.020580990802522, 3.801622638175366, 4.328275375951974, 4.854646790442334, 5.266009489642633, 5.797247434405595, 6.251524010778093, 6.917085124522783, 7.378843553824326, 7.953053280630099, 8.262239449837357, 8.748424384432361, 9.482062116301028, 10.00169219530598, 10.38990638206494, 10.80349483178514, 11.22758606695588, 11.88735638149181, 12.01699302637923, 12.79651708791311, 13.00200201385415

Graph of the $Z$-function along the critical line