Properties

Label 2-179520-1.1-c1-0-46
Degree $2$
Conductor $179520$
Sign $1$
Analytic cond. $1433.47$
Root an. cond. $37.8612$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 4·7-s + 9-s + 11-s − 2·13-s − 15-s − 17-s − 4·19-s + 4·21-s + 25-s + 27-s + 6·29-s − 8·31-s + 33-s − 4·35-s + 10·37-s − 2·39-s + 6·41-s − 4·43-s − 45-s − 12·47-s + 9·49-s − 51-s − 6·53-s − 55-s − 4·57-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s − 0.554·13-s − 0.258·15-s − 0.242·17-s − 0.917·19-s + 0.872·21-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.174·33-s − 0.676·35-s + 1.64·37-s − 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.149·45-s − 1.75·47-s + 9/7·49-s − 0.140·51-s − 0.824·53-s − 0.134·55-s − 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 179520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 179520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(179520\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(1433.47\)
Root analytic conductor: \(37.8612\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 179520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.405158415\)
\(L(\frac12)\) \(\approx\) \(3.405158415\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 - T \)
17 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99702551563404, −12.78393326400453, −12.29099533697039, −11.59748958765635, −11.24060120589456, −11.02462776284268, −10.37203754514530, −9.652320295152282, −9.495285211726257, −8.581910556605443, −8.366860803533097, −8.070549798403722, −7.432000139025129, −7.026540987459051, −6.462091823794340, −5.808165905724799, −5.098800851239294, −4.701608110690507, −4.251679907055313, −3.791031959594476, −3.018052709314163, −2.398901991015293, −1.901221244965494, −1.309439081753693, −0.5121118283465890, 0.5121118283465890, 1.309439081753693, 1.901221244965494, 2.398901991015293, 3.018052709314163, 3.791031959594476, 4.251679907055313, 4.701608110690507, 5.098800851239294, 5.808165905724799, 6.462091823794340, 7.026540987459051, 7.432000139025129, 8.070549798403722, 8.366860803533097, 8.581910556605443, 9.495285211726257, 9.652320295152282, 10.37203754514530, 11.02462776284268, 11.24060120589456, 11.59748958765635, 12.29099533697039, 12.78393326400453, 12.99702551563404

Graph of the $Z$-function along the critical line