Properties

Label 2-178752-1.1-c1-0-228
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 9-s − 3·11-s − 4·13-s + 3·15-s − 6·17-s + 19-s + 23-s + 4·25-s − 27-s − 2·29-s − 2·31-s + 3·33-s − 4·37-s + 4·39-s + 6·41-s + 3·43-s − 3·45-s + 9·47-s + 6·51-s + 6·53-s + 9·55-s − 57-s − 4·59-s − 3·61-s + 12·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 1/3·9-s − 0.904·11-s − 1.10·13-s + 0.774·15-s − 1.45·17-s + 0.229·19-s + 0.208·23-s + 4/5·25-s − 0.192·27-s − 0.371·29-s − 0.359·31-s + 0.522·33-s − 0.657·37-s + 0.640·39-s + 0.937·41-s + 0.457·43-s − 0.447·45-s + 1.31·47-s + 0.840·51-s + 0.824·53-s + 1.21·55-s − 0.132·57-s − 0.520·59-s − 0.384·61-s + 1.48·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44631420923672, −13.19091846851223, −12.44536578810472, −12.23062975302982, −11.86148001413935, −11.20359594392995, −10.86420521161394, −10.58370010417324, −9.945054591811870, −9.246640684247395, −8.959858420412194, −8.283668137738305, −7.695244704079587, −7.439507700411455, −7.013494362496159, −6.465473106545645, −5.698509209536940, −5.288292781686014, −4.719080806117123, −4.213601026939702, −3.920492908237047, −2.996219652684435, −2.569553054807489, −1.909267782833338, −0.9326974465595497, 0, 0, 0.9326974465595497, 1.909267782833338, 2.569553054807489, 2.996219652684435, 3.920492908237047, 4.213601026939702, 4.719080806117123, 5.288292781686014, 5.698509209536940, 6.465473106545645, 7.013494362496159, 7.439507700411455, 7.695244704079587, 8.283668137738305, 8.959858420412194, 9.246640684247395, 9.945054591811870, 10.58370010417324, 10.86420521161394, 11.20359594392995, 11.86148001413935, 12.23062975302982, 12.44536578810472, 13.19091846851223, 13.44631420923672

Graph of the $Z$-function along the critical line