Properties

Label 2-178464-1.1-c1-0-64
Degree $2$
Conductor $178464$
Sign $1$
Analytic cond. $1425.04$
Root an. cond. $37.7497$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s − 4·7-s + 9-s + 11-s − 2·15-s + 2·17-s − 4·19-s − 4·21-s − 25-s + 27-s − 6·29-s − 4·31-s + 33-s + 8·35-s + 2·37-s + 6·41-s − 4·43-s − 2·45-s + 8·47-s + 9·49-s + 2·51-s − 6·53-s − 2·55-s − 4·57-s − 12·59-s − 10·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.301·11-s − 0.516·15-s + 0.485·17-s − 0.917·19-s − 0.872·21-s − 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.718·31-s + 0.174·33-s + 1.35·35-s + 0.328·37-s + 0.937·41-s − 0.609·43-s − 0.298·45-s + 1.16·47-s + 9/7·49-s + 0.280·51-s − 0.824·53-s − 0.269·55-s − 0.529·57-s − 1.56·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178464\)    =    \(2^{5} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1425.04\)
Root analytic conductor: \(37.7497\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 178464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63027130026993, −13.00770253359679, −12.78349570158356, −12.28993164875841, −11.94201009398436, −11.22068912369628, −10.80150687843808, −10.34933496944815, −9.635279625648795, −9.407967539079656, −8.964084325513909, −8.415494112640799, −7.732359585473594, −7.525792273813013, −6.947218130062083, −6.387303397172313, −5.947067102368017, −5.421548242376079, −4.470444634423696, −4.079252620546242, −3.691379518461225, −3.083082188933953, −2.728383814143117, −1.882645513508074, −1.194527675544469, 0, 0, 1.194527675544469, 1.882645513508074, 2.728383814143117, 3.083082188933953, 3.691379518461225, 4.079252620546242, 4.470444634423696, 5.421548242376079, 5.947067102368017, 6.387303397172313, 6.947218130062083, 7.525792273813013, 7.732359585473594, 8.415494112640799, 8.964084325513909, 9.407967539079656, 9.635279625648795, 10.34933496944815, 10.80150687843808, 11.22068912369628, 11.94201009398436, 12.28993164875841, 12.78349570158356, 13.00770253359679, 13.63027130026993

Graph of the $Z$-function along the critical line