Dirichlet series
| L(s) = 1 | − 4·11-s + 4·13-s + 2·17-s + 4·23-s + 8·31-s − 2·37-s + 2·41-s + 4·43-s − 4·47-s + 4·53-s + 4·59-s + 8·61-s − 4·67-s + 12·71-s − 4·73-s − 4·79-s + 8·83-s − 14·89-s − 12·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
| L(s) = 1 | − 1.20·11-s + 1.10·13-s + 0.485·17-s + 0.834·23-s + 1.43·31-s − 0.328·37-s + 0.312·41-s + 0.609·43-s − 0.583·47-s + 0.549·53-s + 0.520·59-s + 1.02·61-s − 0.488·67-s + 1.42·71-s − 0.468·73-s − 0.450·79-s + 0.878·83-s − 1.48·89-s − 1.21·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
Functional equation
Invariants
| Degree: | \(2\) |
| Conductor: | \(176400\) = \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\) |
| Sign: | $-1$ |
| Analytic conductor: | \(1408.56\) |
| Root analytic conductor: | \(37.5308\) |
| Motivic weight: | \(1\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | yes |
| Self-dual: | yes |
| Analytic rank: | \(1\) |
| Selberg data: | \((2,\ 176400,\ (\ :1/2),\ -1)\) |
Particular Values
| \(L(1)\) | \(=\) | \(0\) |
| \(L(\frac12)\) | \(=\) | \(0\) |
| \(L(\frac{3}{2})\) | not available | |
| \(L(1)\) | not available |
Euler product
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
|---|---|---|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | ||
| 5 | \( 1 \) | ||
| 7 | \( 1 \) | ||
| good | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e |
| 13 | \( 1 - 4 T + p T^{2} \) | 1.13.ae | |
| 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac | |
| 19 | \( 1 + p T^{2} \) | 1.19.a | |
| 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae | |
| 29 | \( 1 + p T^{2} \) | 1.29.a | |
| 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai | |
| 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c | |
| 41 | \( 1 - 2 T + p T^{2} \) | 1.41.ac | |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae | |
| 47 | \( 1 + 4 T + p T^{2} \) | 1.47.e | |
| 53 | \( 1 - 4 T + p T^{2} \) | 1.53.ae | |
| 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae | |
| 61 | \( 1 - 8 T + p T^{2} \) | 1.61.ai | |
| 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e | |
| 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am | |
| 73 | \( 1 + 4 T + p T^{2} \) | 1.73.e | |
| 79 | \( 1 + 4 T + p T^{2} \) | 1.79.e | |
| 83 | \( 1 - 8 T + p T^{2} \) | 1.83.ai | |
| 89 | \( 1 + 14 T + p T^{2} \) | 1.89.o | |
| 97 | \( 1 + 12 T + p T^{2} \) | 1.97.m | |
| show more | |||
| show less | |||
Imaginary part of the first few zeros on the critical line
−13.42075072637982, −13.05406121755345, −12.45865174507328, −12.10463122393308, −11.41261136651445, −11.05633388324192, −10.59575022480282, −10.18051091563327, −9.646902126743875, −9.159075548542496, −8.462759855811676, −8.201188469948823, −7.794144940591474, −7.045512583038245, −6.695393827680742, −6.085502419019168, −5.373067448856930, −5.316293671880915, −4.451267701569911, −3.980324445509054, −3.314194701275634, −2.760157680288226, −2.338032840462533, −1.352900778792389, −0.9256439143422097, 0, 0.9256439143422097, 1.352900778792389, 2.338032840462533, 2.760157680288226, 3.314194701275634, 3.980324445509054, 4.451267701569911, 5.316293671880915, 5.373067448856930, 6.085502419019168, 6.695393827680742, 7.045512583038245, 7.794144940591474, 8.201188469948823, 8.462759855811676, 9.159075548542496, 9.646902126743875, 10.18051091563327, 10.59575022480282, 11.05633388324192, 11.41261136651445, 12.10463122393308, 12.45865174507328, 13.05406121755345, 13.42075072637982