Properties

Label 2-1760-1.1-c1-0-27
Degree $2$
Conductor $1760$
Sign $1$
Analytic cond. $14.0536$
Root an. cond. $3.74882$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 4·7-s + 9-s − 11-s + 4·13-s + 2·15-s + 4·17-s + 4·19-s + 8·21-s − 6·23-s + 25-s − 4·27-s − 10·29-s − 4·31-s − 2·33-s + 4·35-s + 2·37-s + 8·39-s − 10·41-s + 8·43-s + 45-s + 6·47-s + 9·49-s + 8·51-s + 2·53-s − 55-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s − 0.301·11-s + 1.10·13-s + 0.516·15-s + 0.970·17-s + 0.917·19-s + 1.74·21-s − 1.25·23-s + 1/5·25-s − 0.769·27-s − 1.85·29-s − 0.718·31-s − 0.348·33-s + 0.676·35-s + 0.328·37-s + 1.28·39-s − 1.56·41-s + 1.21·43-s + 0.149·45-s + 0.875·47-s + 9/7·49-s + 1.12·51-s + 0.274·53-s − 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1760\)    =    \(2^{5} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(14.0536\)
Root analytic conductor: \(3.74882\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.366048320\)
\(L(\frac12)\) \(\approx\) \(3.366048320\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.171444684967333959644563276068, −8.430504583847850828437166816068, −7.87250663858398564803871887844, −7.32755497663472783830580886838, −5.79585446026787716953342483093, −5.39771920980252886633836422060, −4.09748454363254359064679042672, −3.35779430418487990253666342356, −2.16574614646445950481838552141, −1.43098148196231303000025265209, 1.43098148196231303000025265209, 2.16574614646445950481838552141, 3.35779430418487990253666342356, 4.09748454363254359064679042672, 5.39771920980252886633836422060, 5.79585446026787716953342483093, 7.32755497663472783830580886838, 7.87250663858398564803871887844, 8.430504583847850828437166816068, 9.171444684967333959644563276068

Graph of the $Z$-function along the critical line