Properties

Label 2-172800-1.1-c1-0-62
Degree $2$
Conductor $172800$
Sign $-1$
Analytic cond. $1379.81$
Root an. cond. $37.1458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 5·11-s − 4·13-s + 4·17-s + 8·19-s − 8·23-s + 2·29-s − 7·31-s − 8·37-s − 4·43-s + 4·47-s − 6·49-s + 7·53-s − 12·67-s + 4·71-s + 15·73-s + 5·77-s − 4·79-s − 83-s − 12·89-s − 4·91-s − 7·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.377·7-s + 1.50·11-s − 1.10·13-s + 0.970·17-s + 1.83·19-s − 1.66·23-s + 0.371·29-s − 1.25·31-s − 1.31·37-s − 0.609·43-s + 0.583·47-s − 6/7·49-s + 0.961·53-s − 1.46·67-s + 0.474·71-s + 1.75·73-s + 0.569·77-s − 0.450·79-s − 0.109·83-s − 1.27·89-s − 0.419·91-s − 0.710·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(172800\)    =    \(2^{8} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1379.81\)
Root analytic conductor: \(37.1458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 172800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.79492258600273, −12.82418011396084, −12.22747085804628, −12.07513002307512, −11.71126391870373, −11.23220693912732, −10.50675870165772, −10.02421674842914, −9.572811729285984, −9.361681712339879, −8.621988257925583, −8.150242744133137, −7.562707519705388, −7.209819522844322, −6.755573874594996, −6.060660084037291, −5.458302756916915, −5.227591405028132, −4.473072095903445, −3.892758510293891, −3.457645554752851, −2.891343025646744, −1.990875482359053, −1.570594837519900, −0.9236876438054423, 0, 0.9236876438054423, 1.570594837519900, 1.990875482359053, 2.891343025646744, 3.457645554752851, 3.892758510293891, 4.473072095903445, 5.227591405028132, 5.458302756916915, 6.060660084037291, 6.755573874594996, 7.209819522844322, 7.562707519705388, 8.150242744133137, 8.621988257925583, 9.361681712339879, 9.572811729285984, 10.02421674842914, 10.50675870165772, 11.23220693912732, 11.71126391870373, 12.07513002307512, 12.22747085804628, 12.82418011396084, 13.79492258600273

Graph of the $Z$-function along the critical line