Properties

Label 2-171600-1.1-c1-0-153
Degree $2$
Conductor $171600$
Sign $-1$
Analytic cond. $1370.23$
Root an. cond. $37.0166$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·7-s + 9-s − 11-s − 13-s − 2·17-s + 4·19-s − 4·21-s − 27-s − 4·29-s − 2·31-s + 33-s − 2·37-s + 39-s − 6·41-s − 6·43-s − 4·47-s + 9·49-s + 2·51-s + 6·53-s − 4·57-s + 4·59-s + 10·61-s + 4·63-s − 12·67-s − 4·71-s + 6·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.51·7-s + 1/3·9-s − 0.301·11-s − 0.277·13-s − 0.485·17-s + 0.917·19-s − 0.872·21-s − 0.192·27-s − 0.742·29-s − 0.359·31-s + 0.174·33-s − 0.328·37-s + 0.160·39-s − 0.937·41-s − 0.914·43-s − 0.583·47-s + 9/7·49-s + 0.280·51-s + 0.824·53-s − 0.529·57-s + 0.520·59-s + 1.28·61-s + 0.503·63-s − 1.46·67-s − 0.474·71-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 171600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(171600\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1370.23\)
Root analytic conductor: \(37.0166\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 171600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43550636972031, −13.03796457485062, −12.38356337918972, −11.81620554410852, −11.61799035526753, −11.15101647177885, −10.74290530535150, −10.11782182575652, −9.835250093707417, −9.060367412008804, −8.629268329879135, −8.125831223083761, −7.647144953206283, −7.130406100032865, −6.799212749689258, −5.953074181636470, −5.482532333967133, −5.057837908039234, −4.715384632223190, −4.062244752385263, −3.473655801462577, −2.731734134852999, −1.930793861223095, −1.630257722649355, −0.8343069024011901, 0, 0.8343069024011901, 1.630257722649355, 1.930793861223095, 2.731734134852999, 3.473655801462577, 4.062244752385263, 4.715384632223190, 5.057837908039234, 5.482532333967133, 5.953074181636470, 6.799212749689258, 7.130406100032865, 7.647144953206283, 8.125831223083761, 8.629268329879135, 9.060367412008804, 9.835250093707417, 10.11782182575652, 10.74290530535150, 11.15101647177885, 11.61799035526753, 11.81620554410852, 12.38356337918972, 13.03796457485062, 13.43550636972031

Graph of the $Z$-function along the critical line