Properties

Label 2-17136-1.1-c1-0-31
Degree $2$
Conductor $17136$
Sign $-1$
Analytic cond. $136.831$
Root an. cond. $11.6975$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 2·11-s − 2·13-s + 17-s + 4·23-s − 5·25-s − 4·29-s + 8·37-s + 2·41-s + 49-s − 2·53-s + 4·59-s − 12·61-s + 8·67-s + 12·71-s − 14·73-s − 2·77-s − 12·79-s + 4·83-s + 6·89-s − 2·91-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.377·7-s − 0.603·11-s − 0.554·13-s + 0.242·17-s + 0.834·23-s − 25-s − 0.742·29-s + 1.31·37-s + 0.312·41-s + 1/7·49-s − 0.274·53-s + 0.520·59-s − 1.53·61-s + 0.977·67-s + 1.42·71-s − 1.63·73-s − 0.227·77-s − 1.35·79-s + 0.439·83-s + 0.635·89-s − 0.209·91-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17136\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(136.831\)
Root analytic conductor: \(11.6975\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17136,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.06205139277946, −15.60286592230226, −14.98860190180624, −14.57408895094107, −13.99787969890180, −13.28172481189443, −12.92062318553099, −12.29783756278362, −11.58232196692000, −11.22404989556447, −10.53768686454867, −9.960909230276093, −9.382349949668535, −8.831521554167372, −7.941051557969274, −7.688522173011912, −7.037203781513413, −6.192514736903221, −5.599656049602494, −4.971530805187514, −4.356002678345015, −3.560133253767285, −2.735108253406855, −2.089397074340587, −1.118058515708866, 0, 1.118058515708866, 2.089397074340587, 2.735108253406855, 3.560133253767285, 4.356002678345015, 4.971530805187514, 5.599656049602494, 6.192514736903221, 7.037203781513413, 7.688522173011912, 7.941051557969274, 8.831521554167372, 9.382349949668535, 9.960909230276093, 10.53768686454867, 11.22404989556447, 11.58232196692000, 12.29783756278362, 12.92062318553099, 13.28172481189443, 13.99787969890180, 14.57408895094107, 14.98860190180624, 15.60286592230226, 16.06205139277946

Graph of the $Z$-function along the critical line