Properties

Label 2-1690-1.1-c1-0-25
Degree $2$
Conductor $1690$
Sign $1$
Analytic cond. $13.4947$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s + 5-s − 2·6-s + 4·7-s − 8-s + 9-s − 10-s + 2·11-s + 2·12-s − 4·14-s + 2·15-s + 16-s + 2·17-s − 18-s − 6·19-s + 20-s + 8·21-s − 2·22-s + 6·23-s − 2·24-s + 25-s − 4·27-s + 4·28-s + 2·29-s − 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.603·11-s + 0.577·12-s − 1.06·14-s + 0.516·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 1.37·19-s + 0.223·20-s + 1.74·21-s − 0.426·22-s + 1.25·23-s − 0.408·24-s + 1/5·25-s − 0.769·27-s + 0.755·28-s + 0.371·29-s − 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1690\)    =    \(2 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(13.4947\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1690,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.458840227\)
\(L(\frac12)\) \(\approx\) \(2.458840227\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.025060619869158898794133991071, −8.585748447644376465948104393438, −8.100118890934652521098165508208, −7.23199397402297436337665710295, −6.34604314687718963427506007589, −5.20744001985508991082692307203, −4.27248516331024539785541305385, −3.06745890083762284356579944006, −2.12823848907769259336957975144, −1.31054759042860725094575746619, 1.31054759042860725094575746619, 2.12823848907769259336957975144, 3.06745890083762284356579944006, 4.27248516331024539785541305385, 5.20744001985508991082692307203, 6.34604314687718963427506007589, 7.23199397402297436337665710295, 8.100118890934652521098165508208, 8.585748447644376465948104393438, 9.025060619869158898794133991071

Graph of the $Z$-function along the critical line