Properties

Label 2-16800-1.1-c1-0-2
Degree $2$
Conductor $16800$
Sign $1$
Analytic cond. $134.148$
Root an. cond. $11.5822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 4·11-s − 6·13-s + 6·17-s − 4·19-s − 21-s − 8·23-s + 27-s + 10·29-s − 4·31-s − 4·33-s + 6·37-s − 6·39-s + 6·41-s + 4·43-s − 12·47-s + 49-s + 6·51-s − 6·53-s − 4·57-s − 4·59-s − 2·61-s − 63-s + 4·67-s − 8·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.20·11-s − 1.66·13-s + 1.45·17-s − 0.917·19-s − 0.218·21-s − 1.66·23-s + 0.192·27-s + 1.85·29-s − 0.718·31-s − 0.696·33-s + 0.986·37-s − 0.960·39-s + 0.937·41-s + 0.609·43-s − 1.75·47-s + 1/7·49-s + 0.840·51-s − 0.824·53-s − 0.529·57-s − 0.520·59-s − 0.256·61-s − 0.125·63-s + 0.488·67-s − 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16800\)    =    \(2^{5} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(134.148\)
Root analytic conductor: \(11.5822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.476174634\)
\(L(\frac12)\) \(\approx\) \(1.476174634\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.95960029350645, −15.32525835317076, −14.62776082660587, −14.36587070654068, −13.82893287473191, −13.01791173947903, −12.49033852161387, −12.33122629054750, −11.50539686444932, −10.61287315889599, −10.10945226797866, −9.823425685748669, −9.213599813025955, −8.241601846749631, −7.856772311991409, −7.543089873796562, −6.602653101667155, −6.014434368183278, −5.211774520899051, −4.648544552595775, −3.921590986906025, −2.955445298253654, −2.599398206058364, −1.797972854274230, −0.4750528877381764, 0.4750528877381764, 1.797972854274230, 2.599398206058364, 2.955445298253654, 3.921590986906025, 4.648544552595775, 5.211774520899051, 6.014434368183278, 6.602653101667155, 7.543089873796562, 7.856772311991409, 8.241601846749631, 9.213599813025955, 9.823425685748669, 10.10945226797866, 10.61287315889599, 11.50539686444932, 12.33122629054750, 12.49033852161387, 13.01791173947903, 13.82893287473191, 14.36587070654068, 14.62776082660587, 15.32525835317076, 15.95960029350645

Graph of the $Z$-function along the critical line