Properties

Label 2-408e2-1.1-c1-0-116
Degree $2$
Conductor $166464$
Sign $1$
Analytic cond. $1329.22$
Root an. cond. $36.4584$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s + 6·11-s − 2·13-s + 6·23-s − 25-s + 10·29-s − 2·31-s + 4·35-s + 6·37-s − 6·41-s + 8·43-s − 3·49-s − 10·53-s + 12·55-s − 8·59-s + 14·61-s − 4·65-s − 4·67-s + 2·71-s + 14·73-s + 12·77-s + 10·79-s + 8·83-s + 10·89-s − 4·91-s − 2·97-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s + 1.80·11-s − 0.554·13-s + 1.25·23-s − 1/5·25-s + 1.85·29-s − 0.359·31-s + 0.676·35-s + 0.986·37-s − 0.937·41-s + 1.21·43-s − 3/7·49-s − 1.37·53-s + 1.61·55-s − 1.04·59-s + 1.79·61-s − 0.496·65-s − 0.488·67-s + 0.237·71-s + 1.63·73-s + 1.36·77-s + 1.12·79-s + 0.878·83-s + 1.05·89-s − 0.419·91-s − 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(166464\)    =    \(2^{6} \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1329.22\)
Root analytic conductor: \(36.4584\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 166464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.502152406\)
\(L(\frac12)\) \(\approx\) \(5.502152406\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.30148449679278, −12.69246363635830, −12.29596869142147, −11.83970722899405, −11.23235282024666, −11.07213923543914, −10.31335065632876, −9.772149313451254, −9.511511754697727, −8.873155542699482, −8.667874135811210, −7.862395112429708, −7.469682917853618, −6.758894809517329, −6.318823955563283, −6.119652560354700, −5.143720256630445, −4.892473370186430, −4.386874118162831, −3.653025878427570, −3.127436617699589, −2.306826906717174, −1.899330352287956, −1.159559535493410, −0.7674994168623107, 0.7674994168623107, 1.159559535493410, 1.899330352287956, 2.306826906717174, 3.127436617699589, 3.653025878427570, 4.386874118162831, 4.892473370186430, 5.143720256630445, 6.119652560354700, 6.318823955563283, 6.758894809517329, 7.469682917853618, 7.862395112429708, 8.667874135811210, 8.873155542699482, 9.511511754697727, 9.772149313451254, 10.31335065632876, 11.07213923543914, 11.23235282024666, 11.83970722899405, 12.29596869142147, 12.69246363635830, 13.30148449679278

Graph of the $Z$-function along the critical line