Properties

Label 2-408e2-1.1-c1-0-77
Degree $2$
Conductor $166464$
Sign $1$
Analytic cond. $1329.22$
Root an. cond. $36.4584$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s + 6·13-s + 6·23-s − 25-s − 6·29-s − 10·31-s + 4·35-s + 2·37-s + 4·43-s − 8·47-s − 3·49-s + 6·53-s + 10·61-s + 12·65-s − 8·67-s + 10·71-s + 16·73-s + 6·79-s + 16·83-s − 10·89-s + 12·91-s − 12·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s + 1.66·13-s + 1.25·23-s − 1/5·25-s − 1.11·29-s − 1.79·31-s + 0.676·35-s + 0.328·37-s + 0.609·43-s − 1.16·47-s − 3/7·49-s + 0.824·53-s + 1.28·61-s + 1.48·65-s − 0.977·67-s + 1.18·71-s + 1.87·73-s + 0.675·79-s + 1.75·83-s − 1.05·89-s + 1.25·91-s − 1.21·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(166464\)    =    \(2^{6} \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1329.22\)
Root analytic conductor: \(36.4584\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 166464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.247911015\)
\(L(\frac12)\) \(\approx\) \(4.247911015\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33311167777160, −12.90334045621539, −12.42007966450126, −11.67364243843078, −11.15312199595946, −10.91811932157977, −10.65390278749966, −9.700991078984493, −9.441370779520469, −9.021411473639578, −8.390609872466330, −8.063043964182997, −7.425429598145162, −6.834531778301024, −6.383039209024185, −5.798868903833779, −5.286730476878928, −5.107954714680828, −4.069126622545982, −3.788191623063833, −3.144000046202223, −2.336622060783518, −1.764680628104603, −1.370841220770718, −0.6034468103462076, 0.6034468103462076, 1.370841220770718, 1.764680628104603, 2.336622060783518, 3.144000046202223, 3.788191623063833, 4.069126622545982, 5.107954714680828, 5.286730476878928, 5.798868903833779, 6.383039209024185, 6.834531778301024, 7.425429598145162, 8.063043964182997, 8.390609872466330, 9.021411473639578, 9.441370779520469, 9.700991078984493, 10.65390278749966, 10.91811932157977, 11.15312199595946, 11.67364243843078, 12.42007966450126, 12.90334045621539, 13.33311167777160

Graph of the $Z$-function along the critical line