Properties

Label 2-1656-1.1-c1-0-18
Degree $2$
Conductor $1656$
Sign $-1$
Analytic cond. $13.2232$
Root an. cond. $3.63637$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 2·7-s + 2·13-s + 4·17-s − 6·19-s − 23-s + 11·25-s − 10·29-s + 4·31-s − 8·35-s − 2·37-s + 6·41-s − 6·43-s − 8·47-s − 3·49-s − 8·53-s + 4·59-s − 2·61-s − 8·65-s + 6·67-s − 14·73-s − 10·79-s − 16·83-s − 16·85-s + 4·91-s + 24·95-s − 18·97-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.755·7-s + 0.554·13-s + 0.970·17-s − 1.37·19-s − 0.208·23-s + 11/5·25-s − 1.85·29-s + 0.718·31-s − 1.35·35-s − 0.328·37-s + 0.937·41-s − 0.914·43-s − 1.16·47-s − 3/7·49-s − 1.09·53-s + 0.520·59-s − 0.256·61-s − 0.992·65-s + 0.733·67-s − 1.63·73-s − 1.12·79-s − 1.75·83-s − 1.73·85-s + 0.419·91-s + 2.46·95-s − 1.82·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1656\)    =    \(2^{3} \cdot 3^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(13.2232\)
Root analytic conductor: \(3.63637\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1656,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.605756147782062852903604944448, −8.180112487664392685124009980414, −7.58531333009871179983901952118, −6.74232627265011018133251955085, −5.63545927802732522211214526310, −4.57387757240098741482768846387, −3.97313545447119724470253775739, −3.11266023045401698411044468700, −1.54331063307051824363877850466, 0, 1.54331063307051824363877850466, 3.11266023045401698411044468700, 3.97313545447119724470253775739, 4.57387757240098741482768846387, 5.63545927802732522211214526310, 6.74232627265011018133251955085, 7.58531333009871179983901952118, 8.180112487664392685124009980414, 8.605756147782062852903604944448

Graph of the $Z$-function along the critical line