Properties

Label 2-165165-1.1-c1-0-20
Degree $2$
Conductor $165165$
Sign $1$
Analytic cond. $1318.84$
Root an. cond. $36.3159$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s + 5-s − 2·6-s + 7-s + 9-s + 2·10-s − 2·12-s + 13-s + 2·14-s − 15-s − 4·16-s − 4·17-s + 2·18-s + 6·19-s + 2·20-s − 21-s + 6·23-s + 25-s + 2·26-s − 27-s + 2·28-s − 29-s − 2·30-s − 3·31-s − 8·32-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s + 0.447·5-s − 0.816·6-s + 0.377·7-s + 1/3·9-s + 0.632·10-s − 0.577·12-s + 0.277·13-s + 0.534·14-s − 0.258·15-s − 16-s − 0.970·17-s + 0.471·18-s + 1.37·19-s + 0.447·20-s − 0.218·21-s + 1.25·23-s + 1/5·25-s + 0.392·26-s − 0.192·27-s + 0.377·28-s − 0.185·29-s − 0.365·30-s − 0.538·31-s − 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165165 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165165\)    =    \(3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1318.84\)
Root analytic conductor: \(36.3159\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 165165,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.658490576\)
\(L(\frac12)\) \(\approx\) \(4.658490576\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 17 T + p T^{2} \) 1.83.ar
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.24355951122634, −12.89089705447836, −12.38459623484663, −11.93439667722892, −11.38926812054928, −11.02666934201930, −10.80132507514154, −9.890654422906308, −9.518210906695126, −8.942995926842339, −8.539443937488964, −7.687638288864748, −7.175699453272776, −6.737297377037960, −6.227976741264998, −5.755574893933568, −5.210277623275836, −4.837200081738843, −4.557668439297334, −3.570467250783506, −3.413335827260376, −2.641718633530152, −1.969431766275170, −1.376669218380102, −0.5013962154106849, 0.5013962154106849, 1.376669218380102, 1.969431766275170, 2.641718633530152, 3.413335827260376, 3.570467250783506, 4.557668439297334, 4.837200081738843, 5.210277623275836, 5.755574893933568, 6.227976741264998, 6.737297377037960, 7.175699453272776, 7.687638288864748, 8.539443937488964, 8.942995926842339, 9.518210906695126, 9.890654422906308, 10.80132507514154, 11.02666934201930, 11.38926812054928, 11.93439667722892, 12.38459623484663, 12.89089705447836, 13.24355951122634

Graph of the $Z$-function along the critical line