Properties

Label 2-162240-1.1-c1-0-93
Degree $2$
Conductor $162240$
Sign $1$
Analytic cond. $1295.49$
Root an. cond. $35.9929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 4·7-s + 9-s + 4·11-s − 15-s + 2·17-s + 4·19-s + 4·21-s + 25-s + 27-s − 10·29-s + 4·31-s + 4·33-s − 4·35-s − 10·37-s − 2·41-s + 4·43-s − 45-s − 8·47-s + 9·49-s + 2·51-s − 2·53-s − 4·55-s + 4·57-s + 12·59-s + 10·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s + 1.20·11-s − 0.258·15-s + 0.485·17-s + 0.917·19-s + 0.872·21-s + 1/5·25-s + 0.192·27-s − 1.85·29-s + 0.718·31-s + 0.696·33-s − 0.676·35-s − 1.64·37-s − 0.312·41-s + 0.609·43-s − 0.149·45-s − 1.16·47-s + 9/7·49-s + 0.280·51-s − 0.274·53-s − 0.539·55-s + 0.529·57-s + 1.56·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1295.49\)
Root analytic conductor: \(35.9929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.927898806\)
\(L(\frac12)\) \(\approx\) \(4.927898806\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23203388087442, −12.90389485259096, −12.10188745889976, −11.80544549595621, −11.44077417877020, −11.08273625764425, −10.37963414087780, −9.868177039683620, −9.381704693246664, −8.828262307135347, −8.434553003571329, −8.015725742178591, −7.449861004297624, −7.132290672667551, −6.566364577648306, −5.756179029960649, −5.245091882484470, −4.824508051063875, −4.169580825669497, −3.612449008757296, −3.375307319771311, −2.366879717302456, −1.794067898259685, −1.335550426996025, −0.6515013460831608, 0.6515013460831608, 1.335550426996025, 1.794067898259685, 2.366879717302456, 3.375307319771311, 3.612449008757296, 4.169580825669497, 4.824508051063875, 5.245091882484470, 5.756179029960649, 6.566364577648306, 7.132290672667551, 7.449861004297624, 8.015725742178591, 8.434553003571329, 8.828262307135347, 9.381704693246664, 9.868177039683620, 10.37963414087780, 11.08273625764425, 11.44077417877020, 11.80544549595621, 12.10188745889976, 12.90389485259096, 13.23203388087442

Graph of the $Z$-function along the critical line