Properties

Label 2-162240-1.1-c1-0-175
Degree $2$
Conductor $162240$
Sign $-1$
Analytic cond. $1295.49$
Root an. cond. $35.9929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 2·7-s + 9-s − 15-s − 2·19-s + 2·21-s + 6·23-s + 25-s + 27-s − 4·31-s − 2·35-s + 2·37-s + 6·41-s − 4·43-s − 45-s − 3·49-s + 6·53-s − 2·57-s + 10·61-s + 2·63-s − 8·67-s + 6·69-s − 8·73-s + 75-s − 8·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.258·15-s − 0.458·19-s + 0.436·21-s + 1.25·23-s + 1/5·25-s + 0.192·27-s − 0.718·31-s − 0.338·35-s + 0.328·37-s + 0.937·41-s − 0.609·43-s − 0.149·45-s − 3/7·49-s + 0.824·53-s − 0.264·57-s + 1.28·61-s + 0.251·63-s − 0.977·67-s + 0.722·69-s − 0.936·73-s + 0.115·75-s − 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1295.49\)
Root analytic conductor: \(35.9929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40623587373347, −12.99866096009113, −12.75160517618853, −11.98489205331024, −11.59864776199220, −11.16925581949428, −10.63407979318350, −10.29318408303371, −9.549655632215293, −9.083529237294824, −8.712899622724399, −8.178775773100913, −7.760068312601398, −7.277664996232322, −6.803705226592192, −6.244627896317679, −5.416633447285365, −5.126447488389406, −4.362617545979461, −4.089252441538601, −3.374188219315211, −2.808561203232312, −2.251657105991709, −1.521782749239839, −0.9702981374938472, 0, 0.9702981374938472, 1.521782749239839, 2.251657105991709, 2.808561203232312, 3.374188219315211, 4.089252441538601, 4.362617545979461, 5.126447488389406, 5.416633447285365, 6.244627896317679, 6.803705226592192, 7.277664996232322, 7.760068312601398, 8.178775773100913, 8.712899622724399, 9.083529237294824, 9.549655632215293, 10.29318408303371, 10.63407979318350, 11.16925581949428, 11.59864776199220, 11.98489205331024, 12.75160517618853, 12.99866096009113, 13.40623587373347

Graph of the $Z$-function along the critical line