Properties

Label 2-162240-1.1-c1-0-86
Degree $2$
Conductor $162240$
Sign $1$
Analytic cond. $1295.49$
Root an. cond. $35.9929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s − 2·11-s − 15-s − 2·17-s − 2·19-s − 2·21-s + 8·23-s + 25-s − 27-s + 6·29-s − 2·31-s + 2·33-s + 2·35-s + 2·37-s + 2·41-s + 45-s + 6·47-s − 3·49-s + 2·51-s + 10·53-s − 2·55-s + 2·57-s + 14·59-s + 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s − 0.258·15-s − 0.485·17-s − 0.458·19-s − 0.436·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s − 0.359·31-s + 0.348·33-s + 0.338·35-s + 0.328·37-s + 0.312·41-s + 0.149·45-s + 0.875·47-s − 3/7·49-s + 0.280·51-s + 1.37·53-s − 0.269·55-s + 0.264·57-s + 1.82·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1295.49\)
Root analytic conductor: \(35.9929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.072292384\)
\(L(\frac12)\) \(\approx\) \(3.072292384\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28994213946299, −12.82458364725488, −12.37639625916588, −11.64222753924767, −11.45641730681732, −10.84281778578131, −10.43876580860978, −10.17608985437173, −9.380128365817544, −8.951131936334691, −8.465929206734093, −8.003226629966189, −7.278086835493231, −6.958792665600879, −6.422451070718855, −5.786098074850710, −5.327034079403629, −4.873791175306280, −4.463906989125813, −3.791053310485658, −3.011120832793933, −2.370642029049020, −1.953548827715035, −1.009744432384274, −0.6304116383648531, 0.6304116383648531, 1.009744432384274, 1.953548827715035, 2.370642029049020, 3.011120832793933, 3.791053310485658, 4.463906989125813, 4.873791175306280, 5.327034079403629, 5.786098074850710, 6.422451070718855, 6.958792665600879, 7.278086835493231, 8.003226629966189, 8.465929206734093, 8.951131936334691, 9.380128365817544, 10.17608985437173, 10.43876580860978, 10.84281778578131, 11.45641730681732, 11.64222753924767, 12.37639625916588, 12.82458364725488, 13.28994213946299

Graph of the $Z$-function along the critical line