Properties

Label 2-158400-1.1-c1-0-103
Degree $2$
Conductor $158400$
Sign $1$
Analytic cond. $1264.83$
Root an. cond. $35.5644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11-s − 2·13-s − 6·17-s − 4·19-s + 6·29-s + 8·31-s + 6·37-s − 10·41-s + 4·43-s + 8·47-s − 7·49-s + 10·53-s + 12·59-s − 6·61-s + 4·67-s + 14·73-s + 4·83-s + 6·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.301·11-s − 0.554·13-s − 1.45·17-s − 0.917·19-s + 1.11·29-s + 1.43·31-s + 0.986·37-s − 1.56·41-s + 0.609·43-s + 1.16·47-s − 49-s + 1.37·53-s + 1.56·59-s − 0.768·61-s + 0.488·67-s + 1.63·73-s + 0.439·83-s + 0.635·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(158400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1264.83\)
Root analytic conductor: \(35.5644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 158400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.159129544\)
\(L(\frac12)\) \(\approx\) \(2.159129544\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32266188235396, −12.86251234092003, −12.25198807906235, −11.92957276491796, −11.39586311205524, −10.94632064257912, −10.33248901077317, −10.07330930709665, −9.429364551660413, −8.911645393322992, −8.462201256926792, −8.108918036236459, −7.413290571374712, −6.762584180060723, −6.539712969631423, −6.056706422226451, −5.260810744724280, −4.729004453306235, −4.343041398232049, −3.817679380200039, −3.041175940501600, −2.299048531755442, −2.177577691821275, −1.078443829543100, −0.4726096148470098, 0.4726096148470098, 1.078443829543100, 2.177577691821275, 2.299048531755442, 3.041175940501600, 3.817679380200039, 4.343041398232049, 4.729004453306235, 5.260810744724280, 6.056706422226451, 6.539712969631423, 6.762584180060723, 7.413290571374712, 8.108918036236459, 8.462201256926792, 8.911645393322992, 9.429364551660413, 10.07330930709665, 10.33248901077317, 10.94632064257912, 11.39586311205524, 11.92957276491796, 12.25198807906235, 12.86251234092003, 13.32266188235396

Graph of the $Z$-function along the critical line