Properties

Label 2-1584-1.1-c1-0-21
Degree $2$
Conductor $1584$
Sign $-1$
Analytic cond. $12.6483$
Root an. cond. $3.55644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s − 11-s − 6·13-s − 2·17-s − 4·19-s + 4·23-s − 25-s − 6·29-s − 8·35-s + 6·37-s + 6·41-s − 4·43-s − 12·47-s + 9·49-s − 2·53-s + 2·55-s + 12·59-s − 14·61-s + 12·65-s − 4·67-s − 12·71-s − 6·73-s − 4·77-s + 4·79-s + 4·83-s + 4·85-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s − 0.301·11-s − 1.66·13-s − 0.485·17-s − 0.917·19-s + 0.834·23-s − 1/5·25-s − 1.11·29-s − 1.35·35-s + 0.986·37-s + 0.937·41-s − 0.609·43-s − 1.75·47-s + 9/7·49-s − 0.274·53-s + 0.269·55-s + 1.56·59-s − 1.79·61-s + 1.48·65-s − 0.488·67-s − 1.42·71-s − 0.702·73-s − 0.455·77-s + 0.450·79-s + 0.439·83-s + 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(12.6483\)
Root analytic conductor: \(3.55644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1584,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.904484588097141010860759759142, −7.997543392733654992769103344914, −7.65865629521732412346691955519, −6.83591674866215742326047142412, −5.52090262645998901281824990816, −4.69177389499443247074432490187, −4.22001143539448991105624011302, −2.78694304550396960539392900324, −1.76169832798315914027099038233, 0, 1.76169832798315914027099038233, 2.78694304550396960539392900324, 4.22001143539448991105624011302, 4.69177389499443247074432490187, 5.52090262645998901281824990816, 6.83591674866215742326047142412, 7.65865629521732412346691955519, 7.997543392733654992769103344914, 8.904484588097141010860759759142

Graph of the $Z$-function along the critical line